Comparison of the Dispersant Mission Planner 2 (DMP2) and Estimated Dispersant System Potential (EDSP) Calculators

The DMP2 was developed by Genwest Systems, Inc. in 2006 for the NOAA Office of Response and Restoration. It is cited in 33 CFR Parts 154 and 155 and The Guidelines for the U.S. Coast Guard Oil Spill Removal Organization Classification Program. The DMP2 enables Oil Spill Removal Organizations (OSROs) to evaluate Effective Daily Application Capacities (EDAC) for different dispersant application systems, using DMP2's EDAC Mode. This allows OSROs to evaluate compliance with the dispersant application requirements in Coast Guard rules. In Operational Mode, the DMP2 provides general performance estimates for the application of dispersants involving a specified oil spill concentration, application platform, and scenario. It can be used to refine and optimize system configurations and to examine staging and logistical support.

The Estimated Dispersant System Potential (EDSP) Calculator was developed by the Bureau of Safety and Environmental Enforcement and Genwest Systems, Inc. as an update to the DMP2. The DMP2 and the EDSP use the same basic calculation algorithms that were developed by Al Allen in 1986, however, there are some differences. This document compares and describes the differences between the DMP2 and the EDSP Calculators.

- The cascade distance is the distance between the dispersant application platform's home base and the identified primary dispersant staging site. The cascade time is the summation of the notification/mobilization time, the time to travel between the home base and staging site, and a 45 minute briefing period prior to spraying dispersant. The cascade time is subtracted from the Utilization Time (UT in the DMP2, Operating Period in the EDSP) of 12 hours to calculate the time available for the platform to deliver dispersant in the first planning period of an incident. An error occurs in the DMP2 when the cascade distance is not specified. In this case there is no cascade from out-of-area but the notification/mobilization time and the 45 minute briefing time should still be used to calculate a reduced initial time period for dispersant application operations. This error is corrected in the EDSP Calculator.
- The DMP2 did not include the capability to calculate the EDAC for vessel platforms as no "standardized" vessel platforms were defined. The EDSP Calculator will calculate an EDAC for vessel platforms if the vessel platform parameters are approved by the regulatory agency.
- EDSP requires a 45 minute briefing period for all platforms at the beginning of the initial operating period even if the platform is not cascading.
- The DMP2 and the EDSP include a 10 minute check-in period with the aerial spotter aircraft prior to the start of every spray sortie for aircraft platforms. This 10 minute check-in period is not included in the EDSP for vessel platforms.
- The DMP2 output included calculation of a "theoretical" dosage range for each platform. The minimum theoretical dosage calculation uses minimum pump rate, maximum application speed, and maximum spray swath width. The maximum theoretical dosage calculation uses maximum pump rate, minimum application speed, and minimum spray swath width. The theoretical dosage range is not necessarily achievable, can be confusing, and is therefore not included in the EDSP.
- The EDSP includes a "business rule" for vessels. If a vessel has been spraying in OP1 and the dispersant remaining is less than one half the payload at the end of the OP, then the platform will transit back to the staging area to resupply. Otherwise, the

platform will stay at the spill site between operating periods and will spray the remainder of the payload at the beginning of OP2.

- EDSP incorporates the ability for vessel platforms to "Resupply On Scene." If Resupply On Scene is "Yes", then after every payload delivery, the vessel platform will resupply at the spill site, negating the need for Transit Time between sorties. This means that the second Operating Period will always begin with spay operation. If Resupply On Scene is set to "No" then OP2 with start with a transit.
- In order to get reasonable results from the EDSP Calculator for multiday cascades, if a dispersant delivery vessel will take multiple days to cascade on scene, then only the final day of cascade, either full or partial, should be used for entry into the calculator. For example, a vessel with a Mobilization Time of 4 hrs, a cascade distance (Distance to Staging Site) of 500 miles and a Cascade Transit Speed of 5 kts would give a total Cascade and Mobilization Time of 54 hours (2 days, 6 hours). To correctly simulate this in the calculator, remove 2 full days (48hrs) from the Cascade and Mobilization Time, resulting in a 6 hour difference. Enter this difference of 6 hours into the Mobilization Time and leave the Distance to Staging Site blank. This will result in Operating Period 1 capturing the day of arrival on scene and the calculated output for the second Operating Period reflecting an estimated system potential that is repeatable for the remaining days of the response.
- The aircraft platform database for both the DMP2 and the EDSP contain cascade speed data for both cascading with payload and cascading without payload which may or may not be different depending on the platform. The EDSP makes use of both speeds, the DMP2 uses cascade speed with no payload.
- The aerial platform database created from the Dispersant Aircraft Capability Forms has been corrected and updated for use in the EDSP
- The Transit Time (blue bar in Dispersant Spraying Cycle Timeline) for aircraft in the EDSP includes Taxi-Takeoff Time.
- The DMP2 incorrectly calculates the maximum One-Way Transit Distance for an aircraft platform to deliver a full Payload. In the EDSP the correct maximum One-Way Transit Distance is displayed when it is exceeded by the entry in the One-Way Transit Distance, staging to-from spill input field.
- The DMP2 provides estimates for one Utilization Time (Operating Period). The EDSP provides estimates for two Operating Periods, allowing for mobilization/cascading in the first OP and without the time restrictions of mobilization and cascading in the second OP for those scenarios where cascading can be accomplished in the first OP.
- The EDSP includes a visual timeline of dispersant operations, the Dispersant Spraying Cycle Timeline, which can be very useful in estimating the potential of a dispersant application system in different scenarios.

The Estimated Dispersant System Potential (EDSP) and the DMP2 are both very sensitive to certain kinds of scenarios. This sensitivity extends to the ERSP and EBSP as well. The important consideration in all of these calculators can be summed up by the following question. "What is the platform doing at the end of the operating period in the specified scenario?" Case in point is the following Dispersant Spraying Cycle Timeline.

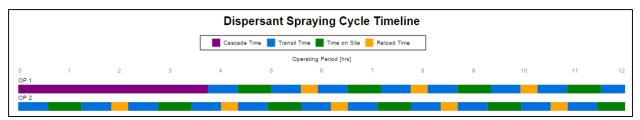


Figure 1. EDSP Dispersant Spraying Cycle Timeline

Note the end of OP1 in the timeline. The bar color is blue indicating that the platform is transiting, in this case, back to staging for a reload of dispersant. The number of payloads delivered in OP1 is exactly four. Modification of the platform parameters in this case, unless carried to extreme, would have no effect on the estimated payload delivery in OP1.

Now look at the green timeline color at the end of OP2 indicating that the platform is on scene and spraying. The calculated pump rate for the platform in this scenario (details below) is 262 gallons per minute in both the DMP2 and the EDSP. Any kind of modification in the platform parameters that would cause in a change of 1 minute in the 12 hour operating period would result in a change of 262 gallons in the estimated dispersant delivery volume if the platform were actually spraying at the end of the OP (not approaching, departing, or turning).

What this means is that what the timeline is showing at the end of an operating period can be an indicator of "how good is the estimate of the potential?" For those who would "game" the calculators, a green timeline at the end of an operating period for a specific scenario would be the place to do it.

The following is a comparison of DMP2, EDSP, and hand calculations using the equations in Section 6 of the EDSP User Manual. Here is the scenario:

Platform - C-130 A with internal dispersant tank.

Mobilization Time - 3 hours

Cascade Distance – 1500 nautical miles, with payload. Range with payload is 1400 nautical miles, therefore cascade will require two legs.

One-way Transit Distance – 100 nautical miles.

Spraying is Bidirectional and Dispersant/Fuel Loads are Simultaneous.

Cascade Transit Time for leg 1 = $\frac{1400 \text{ nautical miles}}{298 \text{ knots}} = 4.7 \text{ hr}$ or 282 minutes

Cascade Transit Time for leg 2 = $\frac{100 \text{ nautical miles}}{298 \text{ knots}} = .336 \text{ hr}$ or 20 minutes

Total Cascade Time then equals:

Mobilization Time	3 hr	180 minutes
Taxi Takeoff Time		15 minutes
Transit Time leg 1		282 minutes

Land Taxi Time	15 minutes
Refuel Time	20 minutes
Taxi Takeoff Time	15 minutes
Transit Time leg 2	20 minutes
Land Taxi Time	15 minutes
Incident Initial Brief Time	<u>45 minutes</u>

Total Cascade Time 607 minutes or 10.12 hours

The DMP2 and the EDSP agree on this cascade time and both estimate that 1 payload or 3250 gallons of dispersant can be delivered in the first operating period. The second operating period requires a separate calculation run for the DMP2, this time with no cascade.

Here are the calculations for the second operating period:

Pump Rate [gpm] =
$$\frac{Dosage [gal per acre] x App Speed [kts]x Swath Width[ft]}{430}$$

= 5 x 150 x 150/430 = 261.63 or 262 gallons per minute, in agreement with DMP2 and EDSP

Spray Time/Sortie [minutes] = $\frac{Payload [gallons]}{Pump Rate [gpm]} = \frac{3250}{262} = 12.42$ minutes

Both DMP2 and EDSP show 12.4 minutes.

Spray Time/Pass [minutes] =
$$\frac{Average Pass Length [NM]x60}{Application Speed [kts]} = \frac{4x60}{150} = 1.6$$
 minutes

Both DMP2 and EDSP show 1.6 minutes for a complete spray pass.

of Passes/Sortie =
$$\frac{Spray Time \ per \ Sortie \ [min]}{Spray Time \ for \ One \ Pass \ [min]} = \frac{12.42}{1.6} = 7.76$$

Both DMP2 and EDSP calculate 7.8 which means there are 7 complete passes and a partial last pass in each sortie. The flight path for this sortie include a transit out to the spill site, a check-in period with the spotter aircraft followed an approach, a spray pass, a departure, and a U turn for each complete pass. After the last partial pass, the C-130 transits back to the staging site to reload. There will be 6 U Turns and 22 Approaches and Departures for this sortie.

One-way Transit Time (including Taxi + Takeoff/Landing)
= Taxi Takeoff Time [min] +
$$\frac{Transit Distance [nm]}{Transit Speed [kts]} x60 = 15 + \frac{100}{298} x60 = 35$$
 minutes

DMP2 Transit Time of 20 minutes + 15 minutes for Taxi Takeoff = 35 minutes. EDSP Transit Time = 35 minutes.

Time for Approaches and Departures [min] = $\frac{Distance [nm]}{Reposition Speed [kts]} \times 60 = 0.4$ minutes

Total time for approaches and departures is 22×0.4 minutes = 8.8 minutes

The flight path for one sortie or payload delivery is depicted below in Figure 2.

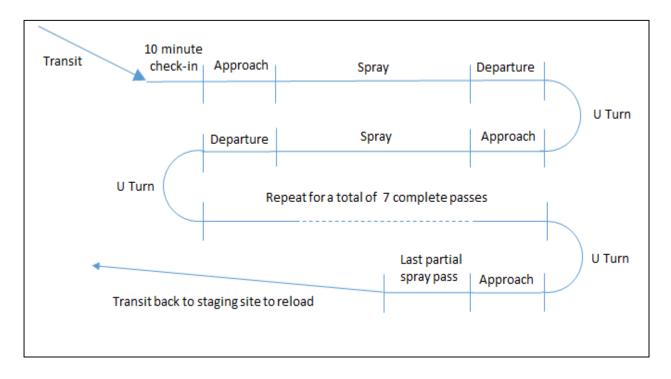


Figure 2. C-130 Flight Path for One Complete Sortie

The Total Time/Sortie for complete sorties equals

One-way Transit Time35 minutesCheck-in Time10 minutesU Turns – 6 @ 1.67 min10 minutesApproaches & Departures8.8 minutesSpray Time12.4 minutesOne-way Transit Time35 minutesTotal Time/Sortie111.2 minutes or 1.85 hours

The DMP2 calculates 1.8 hours and the EDSP calculates 110.4 minutes.

There are 5.8 deliveries estimated in the EDSP and 5.77 in the DMP2. The DMP2 calculates a dispersant delivery of 18762 gallons and the EDSP calculates 18739 gallons, a difference of only 23 gallons for this scenario.

Exit DMP2	Aircraft Calculation	Page Print Page Documentation
└ Specify Scenario (UT, `	Transit Distance, Pass Length) Usin	ng a DOR of 1:20
Desired dispersant Dosage	5.0 Gallons/Acre (46.8 Liters/Hectare) Utilization Time (UT): 12 Hours
One Way Transit Distance: 10	0 Nautical Miles 🔻	Average Pass Length: 4 Nautical Miles 💌
Specify Platform Hercules C130A w Double click to view	Eult	If Cascading, Specify Mobilization Time and Cascade Distance Hr Owith Payload
	Max Min Delete	Adjusted Utilization Time: Hr O No Payload
Pump Rate: (Calculated) GPM	523 60	Range (No Payload): 2086 NM
Swath Width: 150 Ft	150 100	Range (With Payload): 1400 NM
Application Speed: 150 Kts	200 150	Taxi Time (Takeoff): 15 Min Clear
Transit Speed: 298 Kts	298 230	Taxi Time (Landing): 15 Min Cascade
Reposition Speed: 150 Kts	r Resulting Platform/Scenario Values	Cascade Transit Speed: 298 Kts
U Turn Time: 1.67 Min	Theoretical Dosage Range:	Staging Area Briefing: 45 Min
Approach: 1 NM	0.9 to 15.0 Gallons/Acre	Calculate Performance
Departure: 1 NM	8.0 to 140.2 Liters/Hectare	Bidirectional Loading of fuel and dispersant:
Dispersant Load: 20 Min	Calculated Pump Rate: 262 GPM	O Unidirectional Simultaneous O Separate
Fuel Load Time: 20 Min	One-way Transit Time: 20 Min	Set EDAC Calculate Pie Chart
Max Op Time: 4.7 Hr	Areal Coverage Rate:	Max Transit Distance 525 Nautical Miles
Payload: 3250 Gal	52.3 Acres/Min 21.2 Hectares/Min	Time Per Sortie 1.8 Hr
Taxi, Land, Depart: 30 Min	Time On Station/Sortie: 40.1 Min	Payload deliveries/UT 5.77
Always Refuel?: No	Spray Time/Sortie: 12.4 Min	Dispersant Applied 18762 Gal 71013 Liters
	Spray Time/Pass: 1.6 Min	Oil Treated 8934 BBL 1420.5 Cu M
	# of Passes per Sortie: 7.8	Total Area Covered 3752 Acres 1519 Hectares

Figure 3. DMP2 C-130 Scenario

Note that the C-130 default U Turn Time has been changed from 1.75 minutes to 1.67 minutes to conform to the Dispersant Aircraft Capability Form for the Hercules C-130A with internal dispersant tank dated Feb 2, 2007.

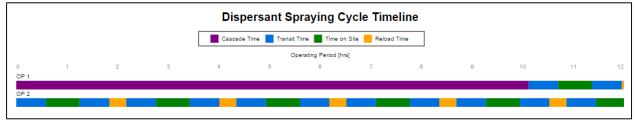


Figure 4. EDSP C-130 Scenario Timeline

Results for Each Operating Period	o	P 1	OP 2	
Cascade Time	10.1	12 hrs	0 hrs	
Time On Scene to Commence Spray Operations for OP 1 (Cascade Time + One Way Transit Time)	10.	7 hrs	N/A	
Adjusted OP Time	1.8	8 hrs	12 hrs	
Payload Deliveries		1	5.8	
Dispersant Applied (Computed EDAC)	325	50 gal	18739 gal	
Total Area Coverage	649	acres	3743 acres	
Oil Treated (EDSP)	154	18 bbl	8923 bbl	
Results per Sortie for a Complete Payload Application				
One-way Transit Time (Including Taxi + Takeoff/Landing for Aircraft)		35 min		
Calculated Pump Rate			262 gpm	
Spray Time/Pass		1.6 min		
# of Passes/Sortie		7.8		
Spray Time/Sortie		12.4 min		
Total Time/Sortie		110.4 min		
Areal Coverage Rate		52.3 acres/min		
Area Covered/Sortie			649 acres	

Figure 5. EDSP C-130 Scenario Tabular Results