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Abstract 
Lagrangian trajectory models or mixed Lagrangian – Eulerian trajectory models are 
commonly used in environmental studies.  This is particularly true in applications 
studying accidental spills during emergency responses or planning for them.  Model 
output is typically presented as mappings of the predicted time dependent locations of 
Lagrangian particles (Lagrangian Elements – LEs).  Although these maps are familiar to 
most responders and are qualitatively useful they fall far short of presenting the 
quantitative information that can be obtained by an Eulerian analysis of the original 
model output.  A description of this process was presented in the first two parts of this 
study (Galt, 2011; Galt, 2015).   

 

This study, the third in the series, goes an additional step and examines the Lagrangian 
model output as represented by a classical Shannon communication channel (Shannon 
and Weaver, 1963).  It is shown that the communication channel's information entropy 
can be linked to dominant physical processes within the Lagrangian model's geophysical 
domain.  Each of the analytical processes leading from: 1) Lagrangian models particle 
distribution => 2) Eulerian densities => 3) Continuum density field => 4) Regional 
representation of probability densities => 5) Shannon information channel entropy are 
described with examples.  A quantitative understanding of when the model loses 
information quality (i.e., needs more data) is the primary goal of this study. 
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Introduction 
 

Many models used to forecast the fate of pollutants use Lagrangian Elements (LEs) to 
represent the pollutant.  The output from these represents “information”.  The 
distribution of Lagrangian Elements evolve over time and provide the user with data 
about expected locations and concentrations of the dependent modeled variable.  What is 
not so obvious is how to quantitatively understand how much information a model 
provides, how much the information degrades over time compared to some objective 
“base level”, and how, or when, data assimilation could be used to restore the 
“information content” of the model.  For researchers and responders involved in 
trajectory analysis these are all important questions. 

The objective of this study is to develop a quantitative definition of information content 
for a typical model framework using an information theory approach.  This is done by 
considering the model output as a communication channel and investigating the amount 
of information that it can carry.  The methods for calculating the capacity of the model's 
communication channel will be introduced and its evolution over time will be used to 
consider the answers to the questions posed in the preceding paragraph.   

This analysis is carried out in a number of steps:  1) Initially, the Lagrangian point data 
is converted into an Eulerian density field. 2) The next step is to convert the Eulerian 
density field into a set of probability values.  3) The resulting probability densities will 
be used in Shannon's communication theorem (Shannon, 1963) to define the models 
information channel's entropy. 4) At this point it is shown that the maximum channel 
entropy is determined by the cardinality of the Eulerian density set and this places 
restrictions on the forms of Lagrangian to Eulerian conversion that is appropriate for 
step 1. 

The final section of this study will be to investigate how the various geophysical 
processes typically simulated in a Lagrangian trajectory model are transformed into the 
evolution of the communication channel representing the model.  These will be 
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discussed initially for idealized cases and then for realistic geophysical domains. 

It is shown that the communication channel information entropy can be linked to 
dominant physical processes within the Lagrangian model's geophysical domain.  Each 
of the analytical processes leading from: 1) Lagrangian models particle distribution => 
2) Eulerian densities => 3) Continuum density field => 4) Regional representation of 
probability densities => 5) Shannon information channel entropy are described with 
examples. 

Information Uncertainty and Entropy 
In 1949 Claude Shannon, working on a mathematic theory of communication at Bell 
Laboratories, presented a classical paper which has appeared in a number of forms and 
was eventually published in a book. (Shannon and Weaver, 1963).  In his research 
Shannon would describe a mathematical framework to quantify the information rate that 
a communication channel could carry. Or using a more modern term, bandwidth.  He 
clearly defined the relationships between signal complexity, the probability of 
uncertainty, and redundancy. These were linked together in his definition of information 
entropy.  At that time the focus of the study was telephone and telegraph lines and the 
effects of line noise on the information transmission rates.  Shannon's work had 
immediate implication in the communication industry and fledgling computer studies. 

In the decades since its introduction a whole field of “information theory” has been build 
up around Shannon's signal “uncertainty” and “entropy” and has found extensive 
applications in many fields such as artificial intelligence, data compression, and 
cryptanalysis, just to name a few.  More general introductions to information theory can 
be found in many text books  (Pierce,1980 and Roman,1997). 

The remainder of this study will be based on Shannon's fundamental theorem relating 
channel entropy to signal probabilities. 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐻𝐻(𝐸𝐸) = −�𝐸𝐸𝑗𝑗𝑙𝑙𝐸𝐸2𝐸𝐸𝑗𝑗
𝑗𝑗

 (1) 
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Shannon's concept of information entropy is strongly analogous to entropy used in 
physical chemistry as described in the laws of thermodynamics.  In addition, it is closely 
linked to the concept of uncertainty in specifying the exact position of a Lagrangian 
particle.  Shannon was quick to realize that the units of information entropy are binary 
numbers (bits) and like chemical entropy, information entropy is always measured 
relative to some value obtained at a maximum entropy state.  In chemistry we speak of 
entropy relative to what it would be at absolute zero (0 deg. K).  For information entropy 
an examination of equation (1) shows that the theoretical maximum value will occur 
when 𝐸𝐸𝑗𝑗 is uniform over all of the (J) VOLUME elements.  For this case, the maximum 
base information entropy will be 𝑙𝑙𝐸𝐸2(𝐽𝐽).  All other possible entropies will be less than 
this maximum value and, in fact, this maximum value may not be obtainable in actuality 
if the cardinality of the VOLUME set is greater than the cardinality of the MASS set 
(J>N). 

From this point on we will assume that the time dependent output from a Lagrangian 
trajectory model is viewed as an information channel and the model output has been 
converted into corresponding time dependent Eulerian density fields as outlined in the 
following section of this study.  Applying these densities to formulate probabilities and 
using equation (1) will yield a scalar measure of the entropy as it evolves over time in 
the information channel representing the original Lagrangian model.  The goal is to see 
what this time dependent entropy trace tells us about the actual Trajectory model as 
applied to its particular domain. 

Conversion of Lagrangian Distributions to Eulerian Densities 
 

At its most fundamental layer a Lagrangian distribution is defined as the coordinate 
positions of some collection of (N) particles.  Without any loss of generality, the 
collection of all possible particle positions may be considered as bounded within some 
as of yet unspecified domain. The typical output from a Lagrangian model is graphically 
presented as a plot of particle locations, appearing somewhat like a swarm of bees. Or, if 
the model output is time dependent, it might be an animation of a series of these plots. 
Such displays are easy to interpret in a qualitative sense and useful in showing the 
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movement and spreading of particles representing the dependent variable distributions.   

For a more quantitative evaluation of Lagrangian distributions, it is necessary to convert 
the model output to an Eulerian density field.  To accomplish this, a generalized density 
is defined with dimensions of MASS/VOLUME.  In a computational sense this amounts 
to assigning some measure on the spatial domain, that can be thought of as a 
“neighborhood” or “region of influence” to each of the Lagrangian particles and forming 
a ratio of the particle's mass with this measure.  There are a variety of ways to approach 
this problem and they are not necessarily unique.  Global constraints are required to 
ensure conservation of mass. In addition, some commonly used computational methods 
will result in aliasing the derived information channel entropy. This aliasing of the 
derived information will be discussed when it comes up in the analysis to follow. 

The MASS portion of this density definition is associated with the Lagrangian point data 
and the VOLUME portion of the definition is associated with the model domain.  It is 
important to understand that a generalized Eulerian transformation will require two 
separate mappings, or functions that operate on different sets.  The MASS function 
operates on the Lagrangian point data and produces a non-negative scalar for each LE: 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀|: (𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖) ⇒ (𝑚𝑚𝑖𝑖|𝑚𝑚𝑖𝑖 ≥ 0 ∧𝑚𝑚𝑖𝑖 = 𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸) (2) 

 
The cardinality of the mass set is over index 𝑝𝑝 which will span all of the Lagrangian 
particles, thus (1 ≤ 𝑝𝑝 ≤ 𝑁𝑁) 𝑤𝑤ℎ𝑝𝑝𝐸𝐸𝑝𝑝 𝑁𝑁 = 𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸 𝐸𝐸𝑜𝑜 𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠. 

 

The VOLUME function operates on the domain set which bounds the cumulative 
potential locations of all of the Lagrangian point data and also results in a non-negative 
scalar: 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸|: (𝑠𝑠𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝐸𝐸𝑚𝑚𝑝𝑝𝑝𝑝𝐸𝐸) ⇒ �𝑣𝑣𝑗𝑗|𝑣𝑣𝑗𝑗 ≥ 0 ∧ 0 ≤ 𝑗𝑗 ≤ 𝐽𝐽 ∧ 𝑣𝑣𝑗𝑗 = 𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸� (3) 

 
The cardinality of the volume set is over the index 𝑗𝑗 and could be any integer value 
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greater than zero. When cardinality of the MASS set and the VOLUME set are equal 
(𝑝𝑝 = 𝑗𝑗) a special case exists and this will have some influence on the potential 
information entropy of the model output as is explained below.  It should also be 
apparent that the spatial domain on which the VOLUME mapping works may have a 
geophysical dimensionality of one, two or more but the result 𝑣𝑣𝑖𝑖  must still always be a 
scalar. 

Example of VOLUME Function 
Example – of VOLUME functions based on tessellation 
A Cartesian grid where the domain is partitioned into adjacent rectangular boxes is 
obviously an example where the cardinality of the 𝑣𝑣𝑖𝑖 set has no relation to the 
cardinality of the 𝑚𝑚𝑖𝑖  set and boxes may or may not be a proper partition of the spatial 
domain.  

A partition of the spatial domain based on nearest neighbor to any location 𝑚𝑚𝑖𝑖  of a 
MASS element can be used. This “neighborhood” approach yields a Delaunay 
triangulation (and its topological duo, Thessian polygons) with the cardinality of the 
MASS set equal to that of the VOLUME set and is a proper partition of the spatial 
domain. An example of this approach is given in Galt (2011). 

Example – of VOLUME function based on kernel analysis 
Cluster analysis where the VOLUME function yields a scalar metric that weights the 
clustering or separation distances found around any particular LE provides the 
cardinality of the MASS set equal to that of the VOLUME set, but does not in general 
represent a proper partition of the spatial domain. An example of this approach is given 
in Galt (2015). 

Kernel methods which operate on the spatial data of the Lagrangian particles will 
typically be extensions or subsets of the cluster analysis method based on some assumed 
kernel function. 

Generalized Density Function Requirements 
Regardless of what VOLUME function is used, the generalized Eulerian density 
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function 𝜌𝜌𝑖𝑖  is defined only after each member of the MASS set is associated with a 
single member of the VOLUME set: 

 

𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑉𝑉𝐸𝐸𝑖𝑖) = 𝜌𝜌𝑖𝑖 = �
𝑚𝑚𝑖𝑖�𝑣𝑣𝑗𝑗�
𝑣𝑣𝑗𝑗𝑗𝑗

𝑤𝑤ℎ𝑝𝑝𝐸𝐸𝑝𝑝
𝑚𝑚𝑖𝑖�𝑣𝑣𝑗𝑗� = 𝑚𝑚𝑖𝑖𝑝𝑝𝑜𝑜�𝑚𝑚𝑖𝑖 ⊂ 𝑣𝑣𝑗𝑗�
𝑚𝑚𝑖𝑖�𝑣𝑣𝑗𝑗� = 0𝑝𝑝𝑜𝑜�𝑚𝑚𝑖𝑖 ⊄ 𝑣𝑣𝑗𝑗�

 (4) 

 
Any VOLUME element could be associated with zero or more MASS elements, but 
each MASS element is associated with a unique VOLUME element.  Obviously there 
may be some j index values that do not contain any mass if the cardinality of the 
VOLUME set is greater than the cardinality of the particle set.  These extraneous 
VOLUME elements will have no MASS associated with them and never contribute to 
the density field. 

Finally, the transformation of Lagrangian point data to Eulerian density data has a global 
requirement that total Lagrangian mass must match the total Eulerian mass.  Obviously 
it would not make physical sense if the transformation either created or lost material.  
This condition will be met if the association of 𝑚𝑚𝑖𝑖 ⇒ 𝑣𝑣𝑗𝑗 is unique so that we have: 

 

𝑀𝑀 = �𝜌𝜌𝑖𝑖
𝑗𝑗

𝑣𝑣𝑗𝑗 (5) 

 
Where M is the total mass of the Lagrangian particles in the scenario. 

 

Eulerian Density Fields Viewed as Probability Densities 
 

The density field described in equation (3) defines the distribution of the total mass (M) 
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throughout the model domain in terms of the individual component masses of the 
Lagrangian elements (LEs) and their associated neighborhoods.  By normalizing these 
by the sum of the neighborhood weighted densities, as shown in equation (4), we obtain 
the fraction probability of mass associated with each LE to the total mass: 

 

probability (P j)=
ρi vi

∑
j
ρ j v j

 
(6) 

 
 

The 𝑃𝑃𝑗𝑗 values represent the spatial distribution of mass as forecast by the trajectory 
model and have the proper mathematical form for a probability, that is, all values are 
greater than or equal to zero and the sum of all the probabilities over the index 𝑝𝑝 for all 
LEs or over index 𝑗𝑗 for all the spatial measures is unity. 

 

�𝑃𝑃𝑖𝑖
𝑖𝑖

= �𝑃𝑃𝑗𝑗
𝑗𝑗

= 1 (7) 

 
Extending the summation over j contains no additional probability information since 
volume elements that do not contain any mass will automatically have zero probability. 
However, inclusion of these values may make a difference in the model information 
channel’s base entropy, which will be defined in the following sections of this study.  

Simple Information Channel Cases 
Nearly all of the important facets of a Lagrangian trajectory model’s behavior, as viewed 
through its information channel, can be demonstrated with a few very simple cases.  The 
simplicity of these cases makes the computational aspects easy to follow, while at the 
same time revealing the profound connections between the dynamic behavior of the 
model and the entropy variations and uncertainty elucidated in its information channel.  
Figure (1) indicates seven panels, each of which shows an instantaneous view of the 
output from a simple Lagrangian trajectory model, including the LE MASS positions 
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and VOLUME boundaries.  In each case the LEs have unit MASS and the total model 
domain is also unity.  The seven cases (panels a thru g) are walked through their 
mathematical computations to obtain their associated information channel. Then the 
channel's entropy is discussed with reference to what it means about the behavior of the 
Lagrangian Trajectory model. 

Case (a) 
The interpretation of these results are straightforward. 

     

𝑁𝑁(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠) = 1
𝐽𝐽(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠) = 1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚1 = 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸𝑣𝑣1 = 1

𝐸𝐸𝑛𝑛𝑙𝑙𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒4)𝜌𝜌1 = 1
𝑃𝑃𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒6)𝑃𝑃1 = 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒1)𝐸𝐸 = 0

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝�𝑙𝑙𝐸𝐸2(𝐽𝐽)� = 0

 

The entropy (E) is zero, meaning that the model completely specifies the location of the 
Lagrangian elements.  In this case there is only one particle mass (𝑚𝑚1) and there is no 
question about its location, that is there is only one VOLUME (𝑣𝑣1) where it could be.  
Zero entropy implies no uncertainty.  The entropy base is also zero which implies that 
no matter how the mass particle moves around the domain it will always result in zero 
entropy or no uncertainty.  There is always only one VOLUME or address where it 
could be found.  The information channel representing this very simple Lagrangian 
model will never degrade over time given this set up.   

Case (b) 
We now move on to the Lagrangian trajectory model with output as seen in panel (b).  
This is very similar to the output shown in case (a) except that the model domain is 
partitioned into two different regions, (𝑣𝑣1𝑝𝑝𝐸𝐸𝑠𝑠 𝑣𝑣2). Applying the appropriate calculations 
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𝑁𝑁(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠) = 1
𝐽𝐽(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠) = 2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚1 = 0,𝑚𝑚2 = 1

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸𝑣𝑣1 = 0.5𝑣𝑣2 = 0.5
𝐸𝐸𝑛𝑛𝑙𝑙𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒4)𝜌𝜌1 = 0𝜌𝜌2 = 2
𝑃𝑃𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒6)𝑃𝑃1 = 0𝑃𝑃2 = 1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒1)𝐸𝐸 = 0
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝�𝑙𝑙𝐸𝐸2(𝐽𝐽)� = 1

 

Looking at these results shows that once again the Lagrangian trajectory model for case 
(b) yields an information channel with zero entropy.  This is because all of the 
Lagrangian mass particles are found within a single VOLUME.  There is no uncertainty 
about where the model's mass is found.  The base entropy, unlike case (a) is not zero, 
but rather one.  The entropy could go up.  This means that as the model continues to 
evolve it might be possible for the Lagrangian particle to wander into the presently 
empty second VOLUME partition. Statistically speaking over a period of time the mass 
particle might be found in the right or left side of the domain.  The information needed 
to distinguish this right/left choice is one binary bit.  To state this in another way, if the 
total Lagrangian mass was equally divided between all the specified VOLUME elements 
then each LE would require one additional binary bit of metadata, which was not 
specified by the Lagrangian trajectory model and thus represents uncertainty. 

Thinking this through we see there are some potential problems. First, there is only one 
mass particle, and the density mapping function requires that each mass element must be 
associated with a unique VOLUME element. This condition will be violated if we try 
and associate parts of a mass particle to more than one VOLUME.  In case (b) the only 
available particle will always be in either the right or left VOLUME and the entropy will 
always be zero.  The entropy base becomes meaningless, because it can never be 
realized.  The second problem is that the cardinality of the VOLUME space is set by 
whoever is carrying out the Eulerian transformation and it does not necessarily have 
anything to do with the actual Lagrangian trajectory model.  It is common for an analyst 
to place a Cartesian grid over the model output and estimate Eulerian densities by 
counting LEs in each rectangle.  This is a bad choice, because the answer will depend on 
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the grid size and (as in this case) if 𝐽𝐽 > 𝑁𝑁 the entropy maximum case will not represent a 
realizable state.  It should be taken as a general rule that any Eulerian density 
transformation procedure should restrict itself to cases where 𝐽𝐽 = 𝑁𝑁. 

Case (c) 
The Lagrangian trajectory model output shown in panel (c) represents a modification of 
panel (b) by the simple expedient of adding one more LE so that the condition 𝐽𝐽 = 𝑁𝑁is 
satisfied.  Applying the appropriate calculations: 

    

𝑁𝑁(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠) = 2
𝐽𝐽(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠) = 2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚1 = 0,𝑚𝑚2 = 2

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸𝑣𝑣1 = 0.5𝑣𝑣2 = 0.5
𝐸𝐸𝑛𝑛𝑙𝑙𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒4)𝜌𝜌1 = 0𝜌𝜌2 = 4
𝑃𝑃𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒6)𝑃𝑃1 = 0𝑃𝑃2 = 1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒1)𝐸𝐸 = 0
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝�𝑙𝑙𝐸𝐸2(𝐽𝐽)� = 1

 

As in the previous case, the information channel representation of the Lagrangian 
trajectory model has an entropy of zero, since all of the mass particles are associated 
with a single VOLUME element. In this case however the evolution of LEs moving 
around within the domain could lead to a realizable uniform Eulerian density 
distribution. (One mass particle in each VOLUME segment.)  This case demonstrates 
that if for some computation reason it is necessary for there to be a fixed number of 
VOLUME elements, the consistency requirement 𝐽𝐽 = 𝑁𝑁 can be obtained by going back 
and reformulating the Lagrangian trajectory model such that the cardinality of the 
particle set matches that of the VOLUME set.   

Theoretically any situation where:(𝐽𝐽 = 𝛼𝛼𝑁𝑁|𝛼𝛼 = 𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑖𝑖𝑝𝑝𝐸𝐸 > 0), will also give a 
realizable entropy base state.  In practice if N is a large number and (𝐽𝐽 − 𝑁𝑁) ≈ 0 the 
approach to the entropy base state should be acceptable.  Stated another way, if a plot of 
the Eulerian density vs. VOLUME elements appears to be a constant then the entropy 
base state has been effectively reached. 
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Case (d) and Case (e) 
Up to this point the concept of a Lagrangian trajectory model evolving over time has 
been mentioned, but left vague. We will now be a bit more specific. Cases (d) & (e) 
depict instantaneous output of a Lagrangian trajectory model, but they are the same 
model shown at two different times. Case (d) depicts the initial conditions and case (e) is 
the same model's output after a long time (essentially infinity).  From this, we can see 
the information channel view for the initial and final state of a typical Lagrangian 
trajectory model.  

Case (d) shows a Lagrangian trajectory model representation of a domain that is 
partitioned into two sections.  All of the LEs are located in the right hand side. Applying 
the appropriate calculations: 

    

𝑁𝑁(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠) = 10
𝐽𝐽(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠) = 2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚1 = 0,𝑚𝑚2 = 10

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸𝑣𝑣1 = 0.5𝑣𝑣2 = 0.5
𝐸𝐸𝑛𝑛𝑙𝑙𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒4)𝜌𝜌1 = 0 𝜌𝜌2 = 20

𝑃𝑃𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒6)𝑃𝑃1 = 0𝑃𝑃2 = 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒1)𝐸𝐸 = 0

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝�𝑙𝑙𝐸𝐸2(𝐽𝐽)� = 1

 

Once again the entropy in the information channel view of this model is zero, because 
all of the MASS particles are in a single VOLUME element.  At this point it is useful to 
observe that many Trajectory models of pollutant discharges take as initial conditions 
that the particles to be tracked are originally in a single location (for example, a tank or 
an accidental release point) and these will always have an initial relative entropy of zero. 
This initial entropy will always be relative to some final entropy base, which depends on 
the cardinality of the VOLUME set, and in this case is one.  The difference between the 
entropy and the entropy base is a measure (in bits of metadata) of the information that 
the model provides compared to a hypothetical model on the same domain, that provides 
no information about the statistical placement of LEs.  With this in mind we now 
consider the next case which will represent the same model, but after a long time has 
elapsed. 
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After an assumed long time the model in the previous panel evolves into the 
representation shown in case (e). This is characterized by the MASS particles being 
uniformly spread out over the entire domain.  Applying the appropriate calculations: 

    

𝑁𝑁(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠) = 10
𝐽𝐽(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠) = 2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚1 = 5,𝑚𝑚2 = 5

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸𝑣𝑣1 = 0.5𝑣𝑣2 = 0.5
𝐸𝐸𝑛𝑛𝑙𝑙𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒4)𝜌𝜌1 = 𝜌𝜌2 = 10
𝑃𝑃𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒6)𝑃𝑃1 = 𝑃𝑃2 = 0.5

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒1)𝐸𝐸 = 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝�𝑙𝑙𝐸𝐸2(𝐽𝐽)� = 1

 

From these results it is seen that the information channel's view of the model has an 
entropy of one, which is the same as the entropy base. This is equivalent to the statement 
that the model provides no statistical information about where in the domain a particular 
LE is located and an additional bit of metadata (right/left) would be required with each 
LE to completely determine its location. 

The panels in the last two cases present a figure that should be familiar to anyone who 
has had an introduction to thermodynamics.  For example, if panel (d) represented a 
volume divided in half such that the right hand side contained a number of molecules at 
a particular temperature (T) with the left hand side a vacuum and at a later time panel (e) 
represents the same system after the divider has been removed (subject to the condition 
that no energy exchange takes place with the outside world) then the molecules have 
dispersed throughout the entire domain in an adiabatic process and the temperature has 
gone down, as well as the chemical entropy. Taking the limit as the left hand volume 
approaches infinity the temperature will approach absolute zero.  Just as the 2nd law of 
thermodynamics and conservation of energy lead to the concept of chemical entropy in a 
physical domain, the probability density and its distribution leads to the concept of 
information entropy in a communication channel.  This analogy was of course 
understood by Shannon and his choice of relating uncertainty in information content to 
“information entropy” makes perfect sense. 

Now let’s consider this analogy in terms of Lagrangian trajectory modeling.  Most 
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natural geophysical fluid domains (oceans, lakes, streams or the atmosphere) are 
dispersive.  We start with a collection of floating objects that are initially contained at a 
single location and are released into the marine environment (for example: an oil spill, 
flotsam from a tsunami, etc).  At the point of release they have a reference entropy of 
zero (all of the LEs are in a single VOLUME).  Once the LEs are released, they move 
and spread out (their entropy increases) and, as time increases, their position becomes 
more and more uncertain. Ultimately, if the dispersion continues, the LEs will be spread 
over the entire domain.  At this point the probability density distribution is flat and the 
information channel is at its entropy base.  This base state depends only on the 
cardinality of the domain and has nothing to do with the initial condition of the spill, 
such as where it took place. At that point the original information in the model is 
completely lost.   

In a geophysical model diffusion, non-linear advection, chaos, and wind interactions all 
contribute to dispersive processes.  They are usually important and at some scale 
dominate the trajectory movement. For these cases information entropy will start at zero 
when the model time equals “spill time” and increase towards a value equal to the 
entropy base. The derivative of the entropy with time is positive and its magnitude 
indicates the extent to which it is losing the ability to statistically distinguish particle 
position.  This leads to the first basic rule of information entropy as derived from a 
trajectory model. Model dispersive processes drive the information channel entropy 
up, and lead to less specificity in the determination of LE locations.   

Case (f) and Case (g) 
We will now go on to a different Lagrangian trajectory model where there is no 
diffusion and the VOLUME set follows a “nearest neighbor” rule based on particle 
MASS positions.  The domain will again be a unit square with a weak uniform current 
across the left hand boundary and a weak uniform current across the bottom. The upper 
and right hand boundaries are blocked so the water level is slowly rising, but we will 
only model horizontal movement. 

These cases show views of Lagrangian trajectory model output separated by time, but in 
this case displaying very different behavior as seen from the information channel view.  
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These two panel pairs will isolate and demonstrate the second fundamental evolutionary 
behaviors expected in the information channel entropy representation of a Lagrangian 
trajectory model. 

The initial model output is shown in panel (f).  These initial conditions have 4 
symmetrically placed particles, each of which is surrounded by a nearest neighbor 
region.  Applying the appropriate calculations: 

    

𝑁𝑁(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠) = 4
𝐽𝐽(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠) = 4

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚1 = 𝑚𝑚2 = 𝑚𝑚3 = 𝑚𝑚4 = 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣3 = 𝑣𝑣4 = 0.25

𝐸𝐸𝑛𝑛𝑙𝑙𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒4)𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌3 = 𝜌𝜌4 = 4
𝑃𝑃𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒6)𝑃𝑃1 = 𝑃𝑃2 = 𝑃𝑃3 = 𝑃𝑃4 = 0.25

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒1)𝐸𝐸 = 2
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝�𝑙𝑙𝐸𝐸2(𝐽𝐽)� = 2

 

We see that the probability distribution is uniform and the entropy is 2.  The entropy 
base is also 2 meaning that this particle distribution started off well dispersed.  From an 
information channel point of view 2 bits of position metadata (up/down, right/left) 
would be needed to completely specify particle locations. We, of course, contrived this 
initial condition and strange current system to demonstrate a point. 

Panel (g) shows the model results for panel (f) after a short time where the horizontal 
currents represent a convergence towards the upper right corner of the domain and 
crowds the floating particles in that direction.   Applying the appropriate calculations: 

   

𝑁𝑁(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠) = 4
𝐽𝐽(𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝𝐸𝐸𝐸𝐸𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠) = 4

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚1 = 𝑚𝑚2 = 𝑚𝑚3 = 𝑚𝑚4 = 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝐸𝐸𝑣𝑣1 = 0.1111𝑣𝑣2 = 𝑣𝑣3 = 0.2222𝑣𝑣4 = 0.4444

𝐸𝐸𝑛𝑛𝑙𝑙𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝐷𝐷𝑝𝑝𝐸𝐸𝑠𝑠𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒4)𝜌𝜌1 = 9.0𝜌𝜌2 = 𝜌𝜌3 = 4.5𝜌𝜌4 = 2.25
𝑃𝑃𝐸𝐸𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑙𝑙𝑝𝑝𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒6)𝑃𝑃1 = 0.1111𝑃𝑃2 = 𝑃𝑃3 = 0.2222𝑃𝑃4 = 0.4444

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑒𝑒1)𝐸𝐸 = 1.836
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝�𝑙𝑙𝐸𝐸2(𝐽𝐽)� = 2
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These results show that the entropy has gone down (0.136 bits) relative to its initial 
state.  This is due to the clustering effect of a convergent current system.  In real 
geophysical flow fields there are often convergent phenomenon in surface currents 
associated with baroclinic fronts, internal waves, variable depth, tidal rips, Lagrangian 
coherent structures, beaching, etc. The list goes on and on. In this demonstration case we 
assumed no dispersion so that the clustering dominates.  This leads to the second basic 
rule of information entropy as derived from a trajectory model. Model clustering 
processes drive the information channel entropy down, and lead to more specificity 
in the determination of LE locations.   

Generalized Non-dimensional Entropy Graph  
In a real situation there will usually be a dominant dispersive effect modified by smaller 
scale or occasional cluster effects.  What the time dependent entropy in a model’s 
information channel shows is some mix of their opposing processes.  This will define 
the time scale at which a model’s initial information content loses its relevance and 
when new data must be assimilated to maintain its usefulness.   

When applying this understanding to oil spill trajectory models it is worthwhile to note 
that dispersive processes spread the spill out, add to its positional uncertainty, and 
degrade the ability of the model to forecast just where it might go.  On the other hand, 
clustering processes tend to move the pollutant together, increasing probability of 
encountering it in some particular region.  Virtually all spill response countermeasures 
depend on high encounter rates.  An understanding of the balance between dispersive 
and clustering processes in a spill trajectory model is a very desirable feature. 

The cases that have been considered so far have provided a generic understanding of the 
behavior that we expect a Lagrangian trajectory model to display in its information 
channel entropy.  Envision a normalized rectangular graph with time going along the 
horizontal axis starting at zero on its left hand edge and entropy along the vertical axis 
ranging from 0 along the lower edge.  Since the maximum possible entropy is �𝑙𝑙𝐸𝐸2(𝑗𝑗)� it 
makes sense to form a non-dimensional measure of entropy as 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �𝑙𝑙𝐸𝐸2(𝑗𝑗)�⁄ . This 
means all possible values of non-dimensional entropy can be plotted on the vertical axis 
between 0 and 1.  In general the initial conditions of the model will yield relatively low 
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or zero starting values of entropy, so the entropy vs. time curve will start in the lower 
left hand corner of the graph. If diffusive processes are scaled as a random walk with a 
displacement step (𝛿𝛿)for each model step interval, while the model is characterized by a 
length scale L a useful non-dimensional time scale is: 

 
𝑇𝑇0 = (𝑉𝑉2 4⁄ 𝛿𝛿2) (8) 

 
This will then typically mean information channel entropy times will plot along the 
horizontal axis a distance of order 1. 

Based on this scaling a typical non-dimensional entropy plot is shown in figure (2).  
Various regions of this graph are annotated. The entropy curve traces to the right over 
time and typically, under the influence of dispersive processes, will rise towards the 
entropy base limit.  At some point the curve approaches this upper boundary indicating 
the model's degradation in usefulness and the need for data assimilation.  For 
geophysically realistic domains the entropy curve, while trending up, may show 
considerable small scale changes in slope, rising more sharply when dispersive 
processes become more dominant and flattening out or even going negative in cases 
where clustering processes dominate. The vertical resolution of the graph will depend 
only on the cardinality of the VOLUME elements used in the Eulerian density 
transformation. While most entropy vs. time curves will show normalized traces similar 
to figure (2) details will be totally controlled by the localized movement and spreading 
processes within the Lagrangian trajectory model that is being examined.  In a real sense 
it will be a scalar signature or fingerprint of the model. Embedded in it is a great deal of 
time scale information on spreading, clustering and relative information content. The 
next section of this study will consider these time dependent signals in more detail. 

Numerical Studies 
Here we consider Lagrangian trajectory models which represent an idealized rectangular 
domain on a geophysical scale which has a realistic number of particles and are subject 
to a set of well-defined physical processes. We start by considering a square domain on 
a Cartesian grid with sides of length 107micro degrees. In geophysical terms this would 
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represent a 10 degree by 10 degree square on the equator (a square approximately 600 
nm on each side).  All of the models considered in this section will include basic 
dispersion which is isotropic in two dimensions.  This will provide a non-
dimensionalization using L (the width or height of the domain in 𝑚𝑚𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝑠𝑠𝑝𝑝𝑖𝑖𝐸𝐸𝑝𝑝𝑝𝑝𝑠𝑠) and k 
(kinematic diffusion in 𝑚𝑚𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝑠𝑠𝑝𝑝𝑖𝑖𝐸𝐸𝑝𝑝𝑝𝑝𝑠𝑠2 𝑠𝑠𝑝𝑝𝑝𝑝⁄ ).  Following a random walk 
implementation for diffusion and scaling suggested by Csanady (1973) we define the 
random step size for 𝛿𝛿𝐸𝐸 = 1𝑠𝑠𝑝𝑝𝑝𝑝 as 𝛿𝛿0 = 2𝑘𝑘𝛿𝛿𝐸𝐸.  From this we may choose a time scale 
equal to 𝑇𝑇0 = 𝑉𝑉2 4⁄ 𝑘𝑘which, related to the time in seconds, it would take for the random 
walk displacements to add up to a trip half way across the model domain.  All model 
output will be shown in non-dimensional time 𝐸𝐸 𝑇𝑇0⁄ .  For the following studies the model 
will be run for 1000 steps out to a non-dimensional time of unity and the random walk 

step size will be corrected from the one second step size by 𝛿𝛿 = 𝛿𝛿0�10−3𝑇𝑇0. 

Study of pure diffusive scale 
In this section we will introduce a more detailed Lagrangian trajectory model which 
exhibits purely diffusive behavior. In this model the only physical process will be 
diffusion represented by a random walk, which is characterized by a step length.  The 
model will be initialized with 1024 LEs placed in the center of the domain.  The 
expectation is that the Lagrangian model's information channel will start with zero 
entropy and transition toward a final state with a theoretical maximum entropy of 10 
bits/particle.  

The theoretical entropy maximum of 10 will of course only take place if the probability 
distribution is actually flat.  Random distributions resulting from diffusion will only 
obtain this value as an infinite ensemble collection of random end states. For any single 
diffusive end point the theoretical value will fall short of this because all of the 
VOLUME elements are not quite the same size. In order to get an understanding of what 
is expected by a single model run to a random end state a test was made with an initial 
random distribution of the original 1024 particles. One of these random end states is 
shown in figure (3).  As can be seen the spacing of the particles are more or less 
uniform, but the nearest neighbor VOLUME elements are not exactly uniform.  The 
entropy calculations done on a number of tests of this scenario produced a mean non-
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dimensional value of 0.93 with a standard deviation of less the 0.01.  This then defines 
the “degradation band” suggested in the upper part of figure (2). At this point the 
Lagrangian trajectory diffusion model is run for a thousand steps. This amounts to about 
1.0 of the suggested non-dimensional time.  At first we examine the tessellation of the 
LE particle distributions at various intervals.  A number of these are shown in figure (4). 
The first panel of this figure shows the results at non-dimensional time 0.05.  The 
particles have diffused a short distance from their initial central position. The entropy is 
increasing. The nearest neighbor of most of the LEs is still small and only the outer 
fringe of particles are associated with low densities. The second panel shows the results 
after non-dimensional time 0.1.  The diffusive effects operating on the initial cluster are 
more evident. The central panel shows the model results after non-dimensional time 0.3.  
The LEs have now spread over the central region of the domain and clearly the largest 
areas of VOLUME calculated via the nearest neighbor routines are diminishing rapidly. 
The lower left hand panel shows the results after non-dimensional time 0.6.  Now the 
LEs are scattered over most of the domain, but there is still obviously a central tendency.  
The diffusive process has not yet given a uniform appearance and lost all of the initial 
location information, but it is definitely approaching that limit. The final panel in the 
lower right hand side of the figure shows the dispersion at non-dimensional time 1.0.  
This shows virtually all of the central tendency is lost and we are very nearly to the state 
shown in figure (3).  Figure (4) just shows the standard Lagrangian trajectory model 
scatter plot of particles with a tessellation based Delaunay triangularization (Galt, 2011). 

To carry on the analysis and formulate an information channel view for this Lagrangian 
trajectory model it is necessary to calculate the Eulerian density associated with each of 
the particles.  The nearest neighbor VOLUME elements for each particle are associated 
with the Voronoi diagram (Thessian polygons), which is the topological duo of the 
Delaunay triangles (Galt, 2011). To examine the density distribution data for this model 
the values are calculated and sorted from minimum to maximum for the cases shown in 
Figure (4). These results are shown in figure (5). This graph shows that initial density 
values have a very sharp increase at the high end of the distribution (relative to the mean 
value). As time increases and diffusive (anti-clustering) processes continue the 
maximum values drop quickly. Then as time increases these highest values tend to 
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asymptote towards a flat, or uniform distribution indicating that it is approaching an 
entropy maximum state. 

Finally, from the distributions of density it is possible to define probability fields.  These 
in turn can be used in Shannon’s equation to calculate a normalized entropy trace similar 
to what is anticipated in figure (2).  Figure (6) shows the results of an ensemble of 10 
cases which are run for a Lagrangian trajectory model initialized at a central point.  The 
lower panel in the figure is an overlay of the ten scenarios.  

They all start at an initial zero entropy and after a non-dimensional time approaches 
unity trend towards the limit of 0.92.  The upper panel shows the mean and standard 
deviation of the ten traces in the lower panel.  Individual scenario traces show some 
variation which causes slight deviations from a smooth evolution of the entropy vs. time 
curve, but these variations are seen to decrease as the number of steps increase, as would 
be expected in any random process. 

With the non-dimensional scaling that was introduced, any changes in the number of 
particles used in the model or in the diffusion coefficient are absorbed into the (0-1.0) 
range of the axes shown in figure (6). The vertical range is normalized by 
�𝑙𝑙𝐸𝐸2(𝑉𝑉𝐸𝐸𝑠𝑠)�and the horizontal range by 𝑇𝑇0 = 𝑉𝑉2 4⁄ 𝑘𝑘so variations in these parameters 
plot to the same universal curve (Figure 7). This was checked by repeating the numerical 
experiment over a range of inputs and was shown to be true.   

Study of mixed convergence/diffusive scale 
The diffusive Lagrangian trajectory model described in the previous section is now 
extended to include a clustering component.  This is accomplished by adding a 
convergent velocity field represented by the current pattern shown in figure (8).  This 
pattern shows velocities that are everywhere directed towards a central Latitude line. 
The speeds are zero at the North and South boundaries of the domain and linearly 
increase to unity at the central Latitude. The actual velocities used in the model will be 
determined by a scaling speed constant 𝛼𝛼𝑣𝑣(𝑙𝑙𝑝𝑝𝐸𝐸𝑖𝑖𝐸𝐸ℎ 𝐸𝐸𝑝𝑝𝑚𝑚𝑝𝑝⁄ ) which will be referred to as 
the convergence coefficient.  To make this non-dimensional we simply express the 𝛼𝛼𝑣𝑣 
length scale in terms of 𝛿𝛿 the random diffusion step size. This non-dimensionally links 
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the convergence process relative to the diffusive process.  For example with 𝛼𝛼𝑣𝑣 = 0.1, 
convergence velocities near the central part of the model would sweep LEs a distance 
one tenth of the distance of a diffusive random step towards the centerline during each 
model step.  The geophysical result will be to inhibit their movement away from the 
central band (clustering). 

Analysis of single convergence zone 
This model set up representing a convergence zone, or Lagrangian coherent structure 
will be investigated by considering two different initial states.  The first will be with the 
LEs initialized as a point source in the center of the model, and the second will be with 
the LEs initialized as a random distribution over the whole domain.  In the first case we 
start with all the LEs located at the exact center of the convergence region in a very low 
entropy state and, as the model evolves, we see the entropy drift upward as particles 
escape the zone of the Lagrangian coherent structure.  In the second case we assume that 
a convergence appears in a high entropy state of highly dispersed LEs and, as the model 
evolves, we expect the entropy to decrease as clustering takes place and the 
convergence, or Lagrangian coherent structure, captures particles. The end state of either 
of these cases should trend to a steady final entropy where the statistical diffusion of 
LEs escaping the Lagrangian coherent structure is just equal to the number that are 
captured by its convergence. 

Both cases of this numerical experiment are run with a convergence coefficient 𝛼𝛼𝑣𝑣 =
0.1. For each case an ensemble of 10 runs was included and the results are shown in 
figure (9).  In many respects the upper two panels, representing the point source case, 
look similar to what is shown in figure (6) for the pure diffusion case. The major 
difference, however, is that the end state does not approach the random state limit of 
0.93 but a reduced entropy limit closer to 0.65.  This difference is the clustering drop in 
entropy caused by the convergence. The lower two panels of figure (9) represent the 
case initialized by a random distribution of LEs.  In this case the entropy starts out at the 
expected maximum (0.93) and declines towards a final value close to 0.65 approaching 
the same limit as seen in the first case. The final state in either case seems to be nearly 
independent of the initial conditions and for constant normalized geophysical processes 
is controlled only by the diffusive and advective balance into and out of the 
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convergence.  

Variations in convergence strength 
In order to test this diffusion/convergence balance, cases were run for 𝛼𝛼𝑣𝑣 values set at 
0.05, 0.1 and 0.2 initialized by point source and random conditions. A summary of end 
states at 𝑇𝑇0is shown in figure (10).  

In the upper panels with a convergence coefficient of 0.05 it is seen on the left that many 
LEs have escaped the central convergence and are diffusing over the entire region. On 
the right the central convergence is collecting (clustering) particles, but not strongly 
enough to strip the entire domain. For both cases however the distribution is dominated 
by the loosely clustered central collection of particles and the information channel 
entropy is approaching a constant value of 0.83. The central panels represent a 
convergence coefficient of 0.1 and their entropy evolution is shown in figure (9) 
approaching a limit value of 0.65.  The lower panels show a convergence coefficient of 
0.2 where the convergence processes clearly dominates the diffusive processes. On the 
left virtually none of the LEs are escaping the central convergence region. On the right 
nearly all of the LEs have been swept into the central structure.  The distribution is 
dominated by the strongly clustered central collection of particles and the limiting 
entropy value in the information channel representation approaches 0.50. 

Rate of change of entropy 
There are several other features of the information channel representation of a 
Lagrangian model with clustering that are worthy of note.  First, it is apparent from the 
lower panels of figure (9) that the initial decrease in entropy from a random state occurs 
at a nearly constant rate. A little study also shows that for different values of 
convergence coefficient (𝛼𝛼𝑣𝑣) this remains a constant. However, the slope (rate of change 
of entropy) changes depending on the actual value of 𝛼𝛼𝑣𝑣. Figure (11) shows a plot of the 
normalized rate of entropy change for variations in the convergence coefficient. The 
superimposed red curve shows that the actual rate of entropy loss is linearly related to 
the convergence coefficient.  In addition, the zero intercept (𝛼𝛼𝑣𝑣 = 0) is positive.  In the 
absence of convergence this is the (virtual) uniform dispersive increase that the 
convergence (clustering) is working against.  This suggests a practical and heuristic 
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method of quantitatively measuring the strength of a Lagrangian coherent 
structure. 1) Initialize a number of LEs randomly distributed over the structure.  
2) Let the model evolve in time and measure the initial normalized rate of decrease 
in entropy.  This will be a quantitative measure of the strength of the structure's 
clustering power. 

 

Study of diffusive and beaching scale 
It is common that Lagrangian trajectory models include processes that allow for particles 
to come in contact with shorelines where they are subject to a different set of 
algorithmic behavior representing beaching, stranding, re-floating, etc.  The question is 
how to represent the information channel entropy when this happens.  The answer to this 
question is to recognize that the “floating” particles and “beached” particles are 
represented by two different sets.  The probability densities of these separate sets may 
depend on different VOLUME functions because the representation of the “floating” 
domain is generally not the same as the “beaching” domain, and in fact will usually have 
different dimensions.  Floating densities will be (𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠 𝑙𝑙𝑝𝑝𝐸𝐸𝑖𝑖𝐸𝐸ℎ2⁄ ) and beaching 
densities will be (𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠 𝑙𝑙𝑝𝑝𝐸𝐸𝑖𝑖𝐸𝐸ℎ⁄ ).  Details about how to merge these sets together for a 
generalized Lagrangian trajectory model are documented in the appendix of this study. 

At a basic level, a Lagrangian trajectory model, which includes beaching, will have a 
Shannon entropy equation (replacing equation 1): 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸(𝐸𝐸) = −
𝐹𝐹𝑛𝑛
𝑁𝑁�𝐸𝐸𝑖𝑖

𝑖𝑖∈𝐹𝐹

𝑙𝑙𝐸𝐸2𝐸𝐸𝑖𝑖 +
𝐸𝐸𝑛𝑛
𝑁𝑁 �𝐸𝐸𝑖𝑖

𝑖𝑖∈𝐵𝐵

𝑙𝑙𝐸𝐸2𝐸𝐸𝑖𝑖 (9) 

 
This is just seen to be the individual entropy of all of the particles in the “floating” 
subset weighted by the fraction of floating particles plus the individual entropy of all the 
“beached” particles weighted by the fraction of beached particles.   

As a simple check we see that if all of the particles are floating then equation (9) reduces 
to equation (1).  Also if all of the particles are beached the entropy is simply based on 
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their entropy and no “floating” processes are represented.  It is also obvious from 
equation (9) that if the probability density values are all equal and are completely in 
either set the entropy max will be 𝑙𝑙𝐸𝐸2𝑁𝑁 as in previous examples.  If, on the other hand, 
some of the particles are floating and some are beached, and in both sets the probability 
densities are “locally” flat, the entropy max will be reduced to as much as 0.5𝑙𝑙𝐸𝐸2 𝑁𝑁 2⁄ +
0.5𝑙𝑙𝐸𝐸2 𝑁𝑁 2⁄ = (𝑙𝑙𝐸𝐸2𝑁𝑁 − 1).  It may seem strange that beaching the particles statistically 
reduces the maximum theoretical entropy by up to exactly one bit. The answer to this 
apparent question becomes clear when we recall that the information channel entropy 
indicates the uncertainty in particle position (or metadata) that is not provided by the 
Lagrangian trajectory model.  In this case the model has provided data 
(floating/beached) which represents at least the potential of one bit of information that 
will not show up in the information channel entropy calculation. 

In order to carry out numerical studies with beaching we need to modify the model that 
has been used in the previous examples.  In the earlier models there were no boundaries 
and any particles that moved beyond the model domain simply reappeared by entering 
through the opposite side.  In essence the model domain represented a view of an infinite 
cyclic repeating space.  For this study, any particles that exit the model domain will be: 
1) held at the exit location and 2) moved from the F (floating) set to the B (beached) set.  
The Eulerian density calculation will use tessellation with Thessian polygons (Galt, 
2011) for the F set and cluster analysis (Galt, 2015) for the B set.  Once the Eulerian 
densities have been defined, probabilities can be calculated and information channel 
entropy obtained from equation (9). 

Beaching from a uniform random distribution 
The first beaching case we will consider is a Lagrangian model initialized with N = 1024 
random particles uniformly distributed over the domain.  The only geophysical process 
included is random-walk diffusion so that as particles near a boundary are displaced 
outside the domain they are more or less randomly appearing in the B set and thinning 
out the edge concentrations in the F set.  Views from this numerical experiment are 
shown in figure (12).  

The upper panel of figure (12) shows the output from the Lagrangian trajectory model 
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with the red triangular mesh indicating the triangular tessellation of the F (floating) set 
after the model has run for a period of time.  Surrounding the floating particles are the 
beached particles in black.  The thinning out of floating particles along the boundaries 
can be seen so that the actual rate of transfer from floating to beaching will go down 
over time. 

The central panel shows the time dependent development of a number of the model's 
computational components for one trial run. Note that the time axis extends to 2 𝑇𝑇0, or 
twice the non-dimensional time.  This is because the beaching time scale is not well 
defined in terms of diffusive processes and we want to make sure to illustrate asymptotic 
effects.  The curves in this panel are for one case study and show 1) fraction of floating 
particles, 2) fraction of beached particles, 3) the entropy contribution calculated for the 
floating particles, 4) the entropy contribution calculated for the beached particles, and 5) 
the weighted sum of the entropy as derived from equation (9).  Initially 100% of the 
particles are floating and the total entropy is dominated by the F set.  By non-
dimensional time of approximately 0.6, over half of the particles are beached and the 
entropy is dominated by the contribution of the B set.  

The third panel shows the mean total entropy (equation 9) of 10 case studies and their 
standard deviation.  This panel shows the initial entropy starting at about 0.93 which is 
what the expected value for all of the particles floating and randomly distributed. The 
value falls quickly for two reasons.  First of all the particles immediately start to beach, 
which shifts them from the F set to the B set.  Secondly, as the particles are removed 
from the bands along the boundary, clustering effects are introduced into the floating 
particle density and probability structures.  The net result is that the total normalized 
entropy drop is about 0.2.  This is about twice what we would expect due to just 
partitioning the particles into two sets. 

Beaching from a point source 
The next numerical scenario to investigate is based on the same set up that was used in 
the previous example, except that the Lagrangian trajectories are initialized at a single 
point in the center of the domain.  The data from these runs are summarized in figure 
(13).  The upper panel of this figure shows the output from a Lagrangian trajectory as 
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the central cluster of particles has started to diffuse far enough so that beaching occurs 
first along the mid-range of each of the four sides of the model.  Beached particle 
locations are shown in black around the edge of the panel and the internal triangular 
structure connects the floating particles in red.   

The central panel shows the time dependent development of a number of the model's 
computational components for one trial run. Note that the time axis extends to 2 𝑇𝑇0, or 
twice the non-dimensional time.  The curves in this panel are for one case study and 
show 1) fraction of floating particles, 2) fraction of beached particles, 3) the entropy 
contribution calculated for the floating particles, 4) the entropy contribution calculated 
for the beached particles, and 5) the weighted sum of the entropy as derived from 
equation(9).  Initially 100% of the particles are floating and the total entropy is 
dominated by the F set. In this case the floating particles, which are initially at a 
maximum distance from all the boundaries, take some time to even start beaching.  In 
fact it is non-dimensional time of nearly 1.9 before half of the particles are beached.  
Initially both the floating particles entropy and beached particles entropy are zero. The 
floating particles entropy being zero because all the particles are in the same place, and 
the beached particles entropy is zero because it is a null set.  When the models diffusive 
processes first start to transfer a few particles into the B set the beached entropy is 
erratic because the sample size is quite small.  As more particles beach it continues to 
grow and smooths out.  Initially the total entropy is dominated by the large fraction of 
floating particles, as time goes on and more particles beach the total entropy clearly 
moves towards an intermediate mix of the two components.   

The third panel shows the mean total entropy (equation 9) of 10 case studies and their 
standard deviation.  This panel shows the initial entropy starting at about 0.0.  The value 
rises quickly and peaks as the particles first start to beach. As the beaching set starts to 
grow its probability densities are decidedly non-uniform.  The net result is the total 
normalized entropy drops from a maximum of about 0.8 to about 0.76.  

It is interesting to note that the final limits of the total entropy for this study and the 
previous one are both approaching non-dimensional values of around 0.75. Comparing 
the upper panels of figure (12) and (13) we see that they appear somewhat similar, 
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although the probability distributions are not uniform in slightly different ways. 

Beaching with strong asymmetry from advection 
The third set of scenarios that we will consider while investigating beaching will all be 
initialized as a point source of 1024 particles placed in the center of the geophysical 
domain.  The particles will be subject to a random walk simulating diffusion and a 
constant current, or advection in the easterly direction.  As the initial concentration 
diffuses and spreads (increases entropy) the entire group will move towards the down 
current shoreline and start beaching but, unlike the previous case, virtually all of the 
beached particles will show up in the B set as tightly clustered in a reduced entropy 
state.  The data from these runs are summarized in figure (14).  The first panel shows the 
geophysical output from the Lagrangian trajectory model at some time after the initial 
point source has diffused and has been advected by the current towards the eastern 
boundary of the model.  The red triangle mesh shows the locations of the floating 
particles and the black points indicate the beached particles. It is obvious that the 
beaching process is clustering particles along the center of the eastern shoreline. From 
this we will expect that the entropy of the B set will be lower than we have seen in the 
more random (less clustered) cases. 

The central panel in figure (14) shows the time dependent trace for a case of floating 
particles, beached particles, entropy of the F set, entropy of the B set, and the total 
information channel entropy.  These all reflect the fact that the floating particles 
experience beaching more rapidly than the previous cases studied since the current is 
sweeping them towards the boundary.  In addition, as the beaching becomes active both 
the floating and beached distributions become non-uniform and both exhibit clustering 
and a subsequent decrease in entropy. 

The third panel of figure (14) shows the mean and standard deviation of an ensemble of 
ten cases.  Initially the entropy rises quickly as the point source disperses. It peaks at 
non-dimensional values of 0.7 at non-dimensional time 0.35. At this point, it starts to fall 
due to localized beaching and the clustering of floating particles in the eastern region of 
the model.  Ultimately most of the particles end up in the B set, concentrated in one 
segment of the model domain. This final configuration has a total entropy of about 0.43 
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reflecting the mostly beached set of particles. 

This completes the studies of a geophysical Lagrangian trajectory model and its 
information channel representation. We have shown how model processes such as 
diffusion, convergence/divergence zones and beaching all are reflected in the entropy 
representation of the model. Up to this point all the studies have focused on the entire 
model domain. We now move on to consider the localization of entropy change for a sub 
region of the model domain and trace this metric as it follows a particular Lagrangian 
particle. 

  

Global vs. local Entropy change   
 

An important feature to notice about any particular Lagrangian convergent model 
process as viewed from an information channel becomes obvious when the entropy 
computation spans the entire model domain and particles are conserved.  If we start out 
from a maximum entropy state, convergence results in clustering and the total entropy 
goes down.  On the other hand if we start out at the maximum entropy state, and localize 
a divergence (dispersive) process it will spread out the particles, but that will just mean 
that they cluster somewhere else.  Once again the entropy goes down.  Figure (15) 
shows the results of two Lagrangian model runs at time 𝑇𝑇0where the convergence 
coefficient is equal to 0.1 and -0.1.  In the upper panel we see the convergence is 
collecting particles in the center of the domain and the resulting clustering drives the 
entropy down.  In the lower panel we see the divergence thinning out particles in the 
central region, but that just causes them to bunch up or cluster along the upper and lower 
boundaries and again drives the entropy down.  A check on the initial rate of entropy 
decrease for these cases shows them to be the same. 

In most of the cases where we carry out information channel analysis on a trajectory 
model it will desirable to distinguish between a global and local view of the entropy.  In 
particular we will be interested in the changes in entropy following a particular 
Lagrangian trajectory, rather than the global change over the entire conservative model 
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domain.  With this in mind we need to focus on a specific method or algorithm to 
calculate the change in the information channel representation of a small patch or 
ensemble of Lagrangian particles localized in a small sub-region of the global model. 

Entropy change related to generalized kinematic flows 
To begin this localization study we may note all fluid flow fields can be decomposed 
using differential analysis (Yuan, 1967) into the following form: 

 

𝑉𝑉�⃗ = 𝑉𝑉0���⃗ +
1
2 �𝛺𝛺 × 𝑠𝑠𝐸𝐸��������������⃗ �+ 𝐷𝐷 (10) 

We will restrict our focus to 2 dimensional surface flows as is appropriate for 
Lagrangian trajectory models of floating pollutants.  𝑉𝑉𝑂𝑂����⃗ is a uniform translation in the 

horizontal;   1
2
�𝛺𝛺 × 𝑠𝑠𝐸𝐸��������������⃗ �is a solid body rotation in the horizontal plane; and, 𝐷𝐷 is the 

vertical component of the rate of strain, or rate of deformation tensor. We now introduce 
a number of randomly distributed Lagrangian particles into this perfectly general 2-
dimensional flow and track their movement for a short interval. Calculating the 
information channel entropy at the beginning and end of the interval would show that 
the first two components of the flow (translation and rotation) will never introduce any 
change in the entropy. Any change in the information channel entropy view for this flow 
will be associated with the deformation tensor, and only with that component.  This, of 
course, makes sense because any simple translation or rotation will not cause distributed 
particles to change the amount of the surrounding domain with which they are 
associated (their VOLUME function equation will not change).  This means that their 
probability density field will not change and by Shannon's equation entropy will be 
constant. On the other hand the deformation tensor warps the surface area that the 
particles are floating on and this will change the probability densities of some particles 
relative to others and the initial local “maximum” entropy value will go down.  This is 
the fundamental relationship between Lagrangian trajectory models of floating 
pollutants and entropy as seen in their information channel representation. 
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Localized general Eulerian differential motion 
Equation (10) applies to any hydrodynamic velocity field. We will now consider 
restricting this to 2-dimensional surface movement and extend it to include all the 
factors acting on Lagrangian particles.  For example, wind drift and retardation 
associated with beaching. If we define the movement field as (𝑛𝑛 = 𝑥𝑥𝑚𝑚𝐸𝐸𝑣𝑣𝑝𝑝𝑚𝑚𝑝𝑝𝐸𝐸𝐸𝐸, 𝑣𝑣 =
𝐸𝐸𝑚𝑚𝐸𝐸𝑣𝑣𝑝𝑝𝑚𝑚𝑝𝑝𝐸𝐸𝐸𝐸) then the movement field surrounding a point 𝑉𝑉0 = 𝑛𝑛0, 𝑣𝑣0can be written as 
a Taylor series expansion: 

 

𝑣𝑣(𝛿𝛿𝑥𝑥, 𝛿𝛿𝐸𝐸) = 𝑉𝑉0 +
𝜕𝜕𝑛𝑛
𝜕𝜕𝑥𝑥 𝛿𝛿𝑥𝑥 +

𝜕𝜕𝑛𝑛
𝜕𝜕𝐸𝐸 𝛿𝛿𝐸𝐸 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥 𝛿𝛿𝑥𝑥 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝐸𝐸 𝛿𝛿𝐸𝐸 (11) 

 
And defining the horizontal component of the divergence as 𝑇𝑇: 

 

𝑇𝑇 = �
𝜕𝜕𝑛𝑛
𝜕𝜕𝑥𝑥 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝐸𝐸� (12) 

The terms in equation (11) can be rearranged into a format similar to the vector form 
shown in equation (10), but now it applies to actual Lagrangian particle displacements, 
not just currents. 

 

𝑣𝑣(𝛿𝛿𝑥𝑥, 𝛿𝛿𝐸𝐸) = 𝑉𝑉𝐸𝐸 �1 0
0 1� �

𝛿𝛿𝑥𝑥
𝛿𝛿𝐸𝐸� + ��

0 �
𝜕𝜕𝑛𝑛
𝜕𝜕𝐸𝐸 −

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥�

−�
𝜕𝜕𝑛𝑛
𝜕𝜕𝐸𝐸 −

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥� 0

�� �
𝛿𝛿𝑥𝑥
𝛿𝛿𝐸𝐸�

+ �𝑇𝑇 0
0 𝑇𝑇� �

𝛿𝛿𝑥𝑥
𝛿𝛿𝐸𝐸� + ��

�𝑇𝑇 −
𝜕𝜕𝑣𝑣
𝜕𝜕𝐸𝐸� �

𝜕𝜕𝑛𝑛
𝜕𝜕𝐸𝐸 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥�

�
𝜕𝜕𝑛𝑛
𝜕𝜕𝐸𝐸 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥� �𝑇𝑇 −

𝜕𝜕𝑛𝑛
𝜕𝜕𝑥𝑥�

�� �
𝛿𝛿𝑥𝑥
𝛿𝛿𝐸𝐸�

 (13) 

 

Each of the matrix terms in equation (13) represent a uniform first order differential 
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component of all possible motions around a point and are pictured in figure (16). 

The first two matrix terms of equation (13) shown in figure (16) represent simple 
translation and solid body rotation and, as such, will never introduce any changes in the 
information entropy representation of particles in the Lagrangian model.  The second 
two matrix terms of equation (13) shown in figure (16) represent a further 
decomposition of the deformation tensor shown in equation (10) and will certainly cause 
local changes in the entropy representation of the trajectory model.  These last two 
matrix terms will also have a clear geophysical interpretation in the Lagrangian 
trajectory model.  

To understand these two matrix terms consider a small circular subset (area 𝑀𝑀) of the 
model domain surrounding a test point.  Within this circular subset we will randomly 
distribute a fixed number of test particles (N). The entropy of this set up will be: 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑀𝑀
𝑉𝑉 𝑙𝑙𝐸𝐸2

(𝑁𝑁) (14) 

 

Where clearly 𝑀𝑀 will be equal to the area interior to the convex hull of the N points and 
𝑉𝑉 is the global area of the entire model domain.  As this collection of particles moves 
under the influence of a uniform divergence or convergence (third matrix term in 
equation (13)) all of the internal distances between particles within the convex hull will 
be uniformly scaled so the collection's internal entropy from Shannon's equation will 
remain the same.  On the other hand, the total area of the convex hull surrounding the 
collection will change so the area (𝑀𝑀) in equation (14) will change.  Now consider this 
same test collection moving under the influence of uniform hyperbolic deformation 
(fourth matrix term of equation (13)).  In this case the various distances between 
particles interior to the collection will change from the initial value of 𝑙𝑙𝐸𝐸2(𝑁𝑁) to some 
value representing the cluster of the hyperbolic deformation. 

The behavior of this small test collection of particles embedded in a Lagrangian 
trajectory model gives a local, point specific measure of the entropy change reflected in 
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the model's information channel representation.  This is seen as a sum of two terms:  The 
first representing the external change of the convex hull and the second due to the 
internal rearrangement of particles.  

Algorithmic heuristic measurement of entropy change following an 
individual trajectory  

Algorithm Development 
From the discussion in the previous section, we are able to define a standard algorithmic 
approach for calculating the change in information entropy following an individual 
particle trajectory in any particular Lagrangian model. It is assumed that these 
calculations are made as a post processor to a standard trajectory run and that at each 
forecast interval the location of any particle is available.  In addition, it is assumed that 
the model can be re-run with all of the movement fields reproduced (deterministically or 
statistically) as in the original run.  The setup and definitions used are outlined in figure 
(17). 

For any interval in the model's evolution a start location for the particle is determined as 
𝑃𝑃1 and the position of that same particle at the next forecast interval is identified as 𝑃𝑃2.  
Half of the distance between 𝑃𝑃1and 𝑃𝑃2is defined as 𝑅𝑅1.  A circular test region of radius 
𝑅𝑅1 centered on location 𝑃𝑃1 is created and populated with 𝑁𝑁 randomly placed particles. 
For this collection of particles two calculations are made. First, the total area interior to 
the convex hull is assigned to 𝑀𝑀0 and, secondly, the entropy based on a tessellation of 
the convex hull is assigned to 𝐸𝐸1.  The test collection of particles is then run forward 
through a duplicate hindcast of the Lagrangian trajectory model to the forecast end 
point.  For the modified collection of test particles the convex hull and entropy 
calculations are repeated as 𝑀𝑀0 + 𝑠𝑠𝑀𝑀 and 𝐸𝐸2. 

With these four data values we can return to equation (13) and identify the local external 
change in entropy due to pure convergent or divergent processes acting on the total 
collection is calculated by introducing a uniform stretching of the Cartesian domain: 
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𝑀𝑀0 → 𝑀𝑀0 + 𝛿𝛿𝑀𝑀

𝐸𝐸𝑖𝑖 → �
𝑀𝑀0

𝑀𝑀0 + 𝛿𝛿𝑀𝑀0� 𝐸𝐸𝑖𝑖

𝛥𝛥𝑀𝑀𝑖𝑖 → �
𝑀𝑀0 + 𝛿𝛿𝑀𝑀0

𝑀𝑀0 �𝛥𝛥𝑀𝑀𝑖𝑖

 (15) 

 
Substituting these into following form of the Entropy equation: 

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒 = −��
𝑀𝑀0

𝑀𝑀0 + 𝛿𝛿𝑀𝑀0� 𝐸𝐸𝑖𝑖𝑙𝑙𝐸𝐸2 ��
𝑀𝑀0

𝑀𝑀0 + 𝛿𝛿𝑀𝑀0� 𝐸𝐸𝑖𝑖� �
𝑀𝑀0 + 𝛿𝛿𝑀𝑀0

𝑀𝑀0 �𝛥𝛥𝑀𝑀𝑖𝑖 (16) 

 

Which reduces to: 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒 = 𝑙𝑙𝐸𝐸2 �
𝑀𝑀0

𝑀𝑀0 + 𝛿𝛿𝑀𝑀0� − 𝐸𝐸 (17) 

    

 

𝛿𝛿𝐸𝐸𝑒𝑒 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒 − 𝐸𝐸 = 𝑙𝑙𝐸𝐸2 �
𝑀𝑀0

𝑀𝑀0 + 𝛿𝛿𝑀𝑀0� (18) 

 
And the local internal changes in entropy due to rearrangement of particles within the 
collection: 

 
𝛿𝛿𝐸𝐸𝑖𝑖 = 𝐸𝐸2 − 𝐸𝐸1 (19) 

 
This gives a total change in entropy along the trajectory during a forecast period as: 
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𝛿𝛿𝐸𝐸 = 𝑙𝑙𝐸𝐸2 �
𝑀𝑀0

𝑀𝑀0 + 𝛿𝛿𝑀𝑀0� + 𝐸𝐸2 − 𝐸𝐸1 (20) 

 

Repeating this test over a sequence of forecast periods will yield the cumulative change 
in entropy following an individual particle throughout the model evolution influenced by 
the geophysical process within the neighborhood of the actual trajectory path.  Particles 
following different paths will show different changes in entropy reflecting different 
degrees of uncertainty.  For example trajectories moving through, or into strong 
convergence structures would tend to show less entropy increases, or uncertainty, 
relative to trajectories not encountering such structures.  An experienced trajectory 
analyst who has worked with models that resolve strong tidal rips (Cook Inlet - spills off 
Kenai, Ak) or coastal estuarine fronts (Gulf coastal areas – Atchafalaya and Mississippi 
outflow, i.e., Alvenus spill off Lake Calcasieu, LA) will have recognized this sort of 
behavior, but without entropy analysis it is very difficult to put a quantitative measure 
on the uncertainty of the results. 

In some respects this simple algorithm can be thought of as a Numerical Entropy 
Change Meter (NECM) . It can computationally be associated with any Lagrangian 
particle of a properly configured trajectory model.  The post processor will then estimate 
the information channel entropy change (uncertainty) for that particular particle 
pathway.  Applying this to a number of particle trajectories over the model domain will 
indicate the relative strength of the forecast in its various sub-regions and suggest where 
and when data assimilation would be helpful. 

 

Interpretation of NECM change information. 
In previous sections of this study there were numerous references to the changes of 
information entropy for an entire modeling domain. When the entropy values were 
normalized against ln2(Num_of_LEs) it was demonstrated that as the model progressed 
from an initial zero entropy state and approached a value of one it generally lost its 
resolving power and approached a random distribution of particles.  The NECM does 
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not operate on the entire model domain so we must modify our interpretation of changes 
in entropy.  For the cases we are going to investigate, the model has an output time step 
of six hours so that the domain over which the information entropy change is calculated 
is a circular region moving along the trajectory path with a diameter of this six hour 
travel distance.  After this six hour period the NECM algorithm resets the entropy 
values and initializes a new step. Because the entropy change associated with each step 
is independent the cumulative change in entropy does not have a limit.  A non-
dimensional value of plus one only means that an LEs position has become uncertain 
with respect to the six-hour domain it is associated with. Net negative changes in 
entropy values over a NECM calculation step mean that uncertainty in particle position 
is not going up due to the fact that internal deformation is compressing the probability 
distribution faster than the external dispersive processes are spreading them apart. In 
order to evaluate the relative strength or voracity of a trajectory we will take a 
conservative approach and consider net positive changes of entropy for each 
computational step as cumulative and net negative entropy changes as simply delaying 
any increase in entropy (or uncertainty) over the period of that time step.  In this way 
changes in total entropy will always be zero or positive and when cumulative values 
approach a non-dimensional value of one it will indicate that the model predictions are 
uncertain within the area of a NECM computation in time and space. That is on the 
order of +/- three hours and about a radius of 10 kilometers for the cases to be studied. 

 

Case Study – Aleutian Trajectory Model 
To demonstrate the application of the Numerical Entropy Change Meter (NECM) we 
will focus on a version of the Navy’s HYCOM circulation model configured for the 
Northern Pacific and Bering Sea. This model was incorporated into the NOAA 
trajectory model (GNOME) and forced using a reanalysis of three years of wind data.  
This work was initially done by the NOAA Marine Debris Program to study the 
distribution of flotsam from the Japanese tsunami of March 2011. This is typical of the 
many large-eddy-simulation models that are available for use in modern particle 
trajectory formulations.  The techniques shown here could be used in any such model. 

We will concentrate on three trajectories that are initiated at the same location and are 
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tracked for a seven day period.  Each of these trajectories starts at a different time and 
represents a different point in the ocean-atmosphere situation space.  Each example 
moves through a different region in the model and is subject to different time-dependent 
wind and current fields. Each could be thought of as an individual attempt at simulating 
a trajectory for a real time forecast. 

The three single particle trajectories are shown in figure (18).  For each of the 
trajectories the circular cluster of test particles is shown for successive 6 hour periods.  
The size of the test cluster is governed by the displacement of the trajectory over the 
time step (in this case 6 hours) and typically has a radius of about 10 kilometers, but 
varies from step to step and trajectory to trajectory.  Each test cluster is inserted into the 
model and its initial area A1 and entropy E1 are calculated.  Then the model is run 
forward and its final area A2 and entropy E2 are calculated. These values are then 
inserted into the algorithm outlined above to calculate the change in entropy for the time 
step. 

 

Bering Sea Trajectory 
The first trajectory under study is the one which moves generally westward into the 
Bering Sea. Figure (19) shows the incremental components of the entropy change (blue 
–  external caused by convergence or divergence of the cluster) and internal (red – 
caused by deformation with the cluster) where the values have been normalized to 
ln2(1024). Looking at the external components (blue) we see that the external, or 
expansion terms are consistently positive. These add to the overall entropy along the 
trajectory and confirm that the model is dispersive.  Uncertainty increases. A spike in the 
entropy at the beginning of day 6 appears to be associated with the slow down and 
reversal of the trajectory.  The internal deformation induced change in entropy (red) is 
generally smaller and represents convergences or divergences internal to the test cluster 
of particles.  From figure (11) we note that these values are close to linear representation 
of the strength of the local convergence or divergence.  Another important way to look 
at the entropy change data is to consider the cumulative sum of entropy change over the 
span of the trajectory.  This curve is obtained by adding the net positive components of 
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entropy change from each interval over successive intervals.   As was explained 
previously in this paper; when the non-dimensional entropy increases to about unity the 
predictive power of the model degrades towards the point where predictions are not 
significantly different from random.  In this case we mean random with respect to the 
size of the test cluster, which implies plus or minus 3 hours and over an area of radius of 
approximately 10 kilometers.  For anyone accustomed to oil spill reconnaissance 
overflights this is approximately the view available from an overflight at 1000 feet.  
Figure (20) shows the cumulative change in entropy curve for Track 1 as well as the 
cumulative entropy on the assumption that assimilation data was available to reinitialize 
the model (set entropy to zero) at intervals defined by raw normalized cumulative 
entropy approaching unity.  Looking at the trajectories in figure (18) we see that to 
maintain confidence in the trajectory forecast an infusion or assimilation of new data 
would be required after about four days. If done correctly this would reset the 
cumulative entropy curve to zero and the forecast could continue for approximately two 
more days before the dispersive nature of the physical processes in the model would 
again require data assimilation.  This technique of checking the strength of a trajectory 
forecast at run time is a unique feature of this analysis. 

 

Bering Shelf Trajectory 
The second trajectory under study is the one which moves generally Northward and then 
onto the Bering Shelf.  Figure (21) shows the incremental components of the entropy 
change (blue – external caused by convergence or divergence of the cluster) and internal 
(red – caused by deformation within the cluster) where the values have been normalized 
to ln2(1024).  Its general characteristics are similar to Track 1, but it also shows some 
significant and interesting differences. As in the previous track the external components 
are uniformly positive indicating that the model is predominately dispersive, and the 
internal deformations are quantitatively smaller and more variable. A striking difference 
in this track is that the entropy changes in the first two days of the trajectory are very 
different from what is seen in the next five days.  The entropy changes in the initial 
period are nearly twice the magnitude of the values in the remaining time span.  
Referring to figure (18) the initial two days of Track 2 are when the trajectory moves 
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across the edge, and into the wake of, strong Northerly currents from Unimak Pass. The 
HYCOM model obviously resolves some of this complexity as non-linear eddies which 
show up in the divergence and deformation fields and thus show up as signals in the 
entropy change. Another indication of model complexity as the trajectory comes out of 
the Unimak Pass wake into the more quiescent region is what appears to be harmonic 
signals in the internal entropy (red).  Figure (22) is a repeat of figure (21) with two 
different series of internal entropy peaks marked.  These are presumably convergent 
bands in Lagrangian structures encountered as the trajectory moves parallel to and then 
across the Bering Shelf.  The temporal steps in the analysis are not fine enough to say 
much more, but it should be pointed out that these signals are related to the local 
physical processes within the model and provide details that are not part of the typical 
trajectory analysis suite.  In addition, anyone who has worked in modeling oil spills for 
real response operations knows that the location of convergence process are critical to 
forecasting regions of “high encounter rates” needed for recovery processes. 

It is also important to consider the cumulative net entropy change along the path taken 
by Track 2.  Figure (23) shows this curve. Like the previous track this curve has a 
continuous positive slope and over the seven day run gains about the same maximum 
value, but it differs in that there is a significant break in the slope at about two and a half 
days presumably because of the Unimak Pass wake effect.  As before we can redraw this 
as a hypothetical curve assuming the timely data assimilation which is also shone in 
figure (23). In this case the normalized entropy limit is reached at 2 days and 3.25 days 
so that the forecast trajectory degenerates quite rapidly during the first half of its travel. 

 

Unimak Pass Trajectory 
The third trajectory in the set we investigate using NECM methods is significantly 
different than the previous examples for two major reasons.  First, it quickly moves into 
the very complex dynamics of Unimak Pass and, secondly, the trajectories cause a 
significant number of the LEs to beach.  During its first day this trajectory moves into 
the rapidly accelerating intake of currents flowing South through the Pass.  As the LEs 
accelerate they are extended and drawn into bands, or filaments.  These strong 
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convergences show up as negative components of entropy change.  In addition to this 
process, particles that encounter shoreline will beach and this version of the model does 
not allow for re-floating. Beaching basically acts as a type of convergence.  The beached 
particles will still contribute to the overall entropy as described in the appendix of this 
report and equation (9).  However, the total probabilities of floating and beached 
particles generally leads to a reduced entropy and beached particles will never contribute 
to an external (divergent) increase in the local entropy.  Both of these factors contribute 
to an entropy distribution that is initially dominated by net negative increments.  Figure 
(24) shows the incremental components of the entropy change (blue – external caused 
by convergence or divergence of the cluster) and internal (red – caused by deformation 
within the cluster) where the values have been normalized to ln2(1024).  During the first 
third to half of this trajectory the models deformation processes dominate and the overall 
dispersive nature of the model is suppressed, indicating lower entropy build and less 
uncertainty. Figure (25) shows the cumulative entropy gain following this trajectory and 
a hypothetical curve assuming the timely data assimilation.  In this case, the normalized 
entropy limit is reached only after 4 days and then the forecast trajectory degenerates 
quite rapidly after several additional assimilations over the next couple days. 

 

Conclusion  
The goal of this study was to conduct a new type of analysis on the particle distribution 
data produced as time-dependent output of a trajectory model.  The first step in this 
process is to calculate an Eulerian density field which may then be used to formulate a 
density probability field.  This portion of the study utilized tessellation methods that 
have been fully described in previous reports of this series. 

The second step in the analysis covers new material and is based on considering the 
density probability field as a communication channel.  Using classical methods of 
information theory the information channel entropy for the Lagrangian particle model is 
calculated. It is shown that the time dependent evolution of the entropy characterizes the 
physical processes that occur within the model. 
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Generalized development of density probability fields are described.  Calculation of 
information channel entropy is demonstrated using simple geometric domains and 
regional partitions.  Non-dimensional scaling provides a way to set objective base levels 
for evaluating entropy change.  Expected changes in entropy due to mixing, spreading, 
Lagrangian structures within the underlying trajectory model formulation are 
documented using simplified numerical experiments.   

Finally, the information channel entropy methods are applied to three individual 
trajectories of an ocean-scale large-eddy simulation Lagrangian particle model 
(HYCOM). Differential components of entropy change are calculated and related to 
physical processes within the model.  In addition, it is possible to identify (in real time 
for the model forecast) the build up of uncertainty within the model simulation and 
identify when data assimilation will be necessary to restore simulation integrity.  

For this study, the primary application used information theory and entropy analysis for 
floating pollutants.  However, this approach is clearly extensible to other types of model 
applications.  In particular, one could introduce Lagrangian particles in a hydrodynamic 
model as a quality check on when the model would benefit from new data or 
when/where the model convergence/divergence areas appear.  LEs could also be used to 
represent particles other than pollution, for example oyster larvae, marine debris or 
atmospheric particles (if one was using an air dispersion model). 

 

References 
 

Csanady, G. T. (1973) Turbulent Diffusion in the Environment .   D. Reidel Publishing 
Co. Boston, MA. pp248. 
 

Galt, J. A. (2011) 11-001 Triangle Tessellation Documentation. 
www.genwest.com/Publications Genwest Technical Publications. 

 

43 

http://www.genwest.com/Publications


Galt, J. A. (2015) 15-001 Triangle Tessellation Documentation Part II. 
www.genwest.com/Publications Genwest Technical Publications. 

 

Pierce, John R. (1961) An Introduction to Information Theory – Symbols, Signals and 
Noise Second, Revised Edition. Dover Publications, Inc. New York, NY. pp305 

 

Roman, Steven (1997) Introduction to Coding and Information Theory. Springer, New 
York, NY. Pp323 

 

Shannon, Claude E. and Warren Weaver (1963) The Mathematical Theory of 
Communication. Univ. of Illinois Press, Urbana and Chicago, Il. pp125 

 

Yuan, S. W. (1967) Foundations of Fluid Mechanics. Prentice-Hall, In. Englewood 
Cliffs, NJ.  pp608. 

  

44 

http://www.genwest.com/Publications


Figure 1.  Simple Lagrangian Trajectory Models for analysis as 
information channels 
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Figure 2. Generic graph of entropy vs. time as seen in the information 
channel representation of a Lagrangian trajectory model 
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Figure 3. The mesh generated from a random placement of 1024 
Lagrangian particles 
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Figure 4. Plots of Lagrangian trajectory diffusion model for various non-
dimensional times 
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Figure 5. Sorted density distributions for the model times shown in 
figure (4) 
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Figure 6. Ensemble Entropy example shown in non- dimensional form 
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Figure 7. Ensemble Entropy traces overlay for variations in scaling 
parameters  
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Figure 8. Current pattern showing line sink representing a convergence 
zone, or Lagrangian Coherent Structure 
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Figure 9. Test results for convergence cases with the convergence 
coefficient set to 𝜶𝜶𝜶𝜶 = 𝟎𝟎.𝟏𝟏 . Upper panels show results for initial source 
as central point source. Lower panels show results for initial source as a 
random distribution 
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Figure 10. LE particle distribution shown for time 𝑻𝑻𝟎𝟎 for different 
convergence coefficient values. Left panels show results initialized 
from a point source. Right panels show results initialized from a 

random distribution 
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Figure 11. Graph of the initial normalized rate of entropy change from a 
random state for various values of convergence coefficient 
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Figure 12. Beaching study of uniform random distribution  
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Figure 13. Beaching study of point source distribution  
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Figure 14. Beaching study of point source with advection 
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Figure 15. Model output at time 𝑻𝑻𝟎𝟎for the cases where the convergence 
coefficient is first 0.1 (convergence) and then -0.1 (divergence). 
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Figure 16. First-order components of differential motion around a point 
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Figure – 17 Setup for localized change in entropy following an individual 
Lagrangian trajectory 
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Figure 18. Three Trajectories used in Entropy Study 
 

Track 1 (Red) – Bering Sea 

Track 2 (Green) – Bering Shelf 

Track 3 (Blue) – Unimak Pass  
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Figure 19. Track 1:  change in entropy components for each time step  
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Figure 20. Track 1: Cumulative entropy change 
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Figure 21. Track 2:  change in entropy components for each time step 
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Figure 22. Track 2: change in entropy components for each time step 
with harmonics marked 
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Figure 23. Track 2: Cumulative entropy change 
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Figure 24. Track 3: change in entropy components for each time step 
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Figure 25. Track 3: Cumulative entropy change 
 

 

 

  

69 



Appendix  

Lagrangian particles as sets 
 

Set definition 
 

Consider a set (LE) which is made up of N elements.  The N elements are partitioned 
into four subsets (S, F, B and O).  Thus each subset contains some fraction of the N 
elements (𝐸𝐸𝑖𝑖): 

 

(𝐸𝐸𝑖𝑖 ∈ 𝑀𝑀) ∨ (𝐸𝐸𝑖𝑖 ∈ 𝐹𝐹) ∨ (𝐸𝐸𝑖𝑖 ∈ 𝐸𝐸) ∨ (𝐸𝐸𝑖𝑖 ∈ 𝑉𝑉)    (A1) 

 

and the cardinality of each of the subsets is between 0 and N subject to the restriction 
that: 

 

𝑁𝑁 = 𝑀𝑀𝑛𝑛 + 𝐹𝐹𝑛𝑛 + 𝐸𝐸𝑛𝑛 + 𝑉𝑉𝑛𝑛    (A2) 

 

where the cardinality of each of the sets 𝑀𝑀𝑛𝑛, 𝐹𝐹𝑛𝑛, 𝐸𝐸𝑛𝑛, 𝑉𝑉𝑛𝑛 are given by: 

 

𝑀𝑀𝑛𝑛 = �1
𝑛𝑛∈𝑆𝑆

;𝐹𝐹𝑛𝑛 = � 1
𝑛𝑛∈𝐹𝐹

;𝐸𝐸𝑛𝑛 = � 1
𝑛𝑛∈𝐵𝐵

;𝑉𝑉𝑛𝑛 = � 1
𝑛𝑛∈𝑂𝑂

 (A3) 

 
Note that there is no restriction on the subsets' cardinality with the exception of the 
limits implied by equations A1 and A2.  In particular, it is possible for one of the subsets 
to be empty, or to contain all of the elements.  

The probability that an element is in any particular subset can be defined as: 
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𝑀𝑀𝑒𝑒 =
𝑀𝑀𝑛𝑛
𝑁𝑁

𝐹𝐹𝑒𝑒 =
𝐹𝐹𝑛𝑛
𝑁𝑁

𝐸𝐸𝑒𝑒 =
𝐸𝐸𝑛𝑛
𝑁𝑁

𝑉𝑉𝑒𝑒 =
𝑉𝑉𝑛𝑛
𝑁𝑁

 (A4) 

 
 
And, from equations A1 and A4, the probability distribution over membership in subsets 
is: 

 
∑ �𝑀𝑀𝑒𝑒 + 𝐹𝐹𝑒𝑒 + 𝐸𝐸𝑒𝑒 + 𝑉𝑉𝑒𝑒�𝑖𝑖

𝑁𝑁 = 1 (A5) 

 
 

A one to one mapping is defined for each subset such that each 𝐸𝐸𝑖𝑖is taken into a non-
negative scalar: 

 
𝐷𝐷(𝐸𝐸𝑖𝑖):⇒ 𝜌𝜌𝑖𝑖  (A6) 

 
The 𝐷𝐷(𝐸𝐸𝑖𝑖)functions that are defined will, in general, be different for each of the subsets. 
(Where any confusion may occur a lower case subscript will be added to the definition 
in equation 6, for example 𝐷𝐷𝑓𝑓(𝐸𝐸𝑖𝑖) represents the mapping used for 𝐸𝐸𝑖𝑖 ∈ 𝐹𝐹.)  

We can also simplify the notation by the requirement that: 
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𝐷𝐷𝑠𝑠(𝐸𝐸𝑖𝑖) = 0𝑜𝑜𝐸𝐸𝐸𝐸(𝐸𝐸𝑖𝑖 ∉ 𝑀𝑀)
𝐷𝐷𝑓𝑓(𝐸𝐸𝑖𝑖) = 0𝑜𝑜𝐸𝐸𝐸𝐸(𝐸𝐸𝑖𝑖 ∉ 𝐹𝐹)
𝐷𝐷𝑏𝑏(𝐸𝐸𝑖𝑖) = 0𝑜𝑜𝐸𝐸𝐸𝐸(𝐸𝐸𝑖𝑖 ∉ 𝐸𝐸)
𝐷𝐷𝑂𝑂(𝐸𝐸𝑖𝑖) = 0𝑜𝑜𝐸𝐸𝐸𝐸(𝐸𝐸𝑖𝑖 ∉ 𝑉𝑉)

 (A7) 

 

The D mapping is intended to represent a generalized Eulerian density function and 
from a dimensional analysis we expect density to be in the form of a “mass” divided by 
a “volume”.  The mass unit for this formulation is the mass (𝑀𝑀𝑖𝑖) associated with the LEs  
in the Lagrangian trajectory formulation. It is unambiguous and common to all of the 
subsets.  The “effective volume” (𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖) used in this function may be different in 
each of the subsets and is associated with a particular partition of the subset which 
assigns a neighborhood to each of the LEs 𝑀𝑀𝑖𝑖values. 

Using equations A6 and A7 we can define a local (set specific) Eulerian density within 
each subset as: 

 

𝜌𝜌𝑖𝑖 =
𝑀𝑀𝑖𝑖

𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖
 (A8) 

 
From equation A8 a local probability is defined as: 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝐸𝐸𝑖𝑖) =
𝜌𝜌𝑖𝑖𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖

∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖
 (A9) 

 
Which is plainly the local density times its associated effective volume (neighborhood) 
normalized by its sum over the entire domain. From equation A7 and A8 the summation 
over the entire domain will be bounded by the summation over the particular subset 
containing the LE.  In addition the summation probabilities over any subset will be 
unity. 
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�𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛
𝑖𝑖

(𝐸𝐸𝑖𝑖) = 1 (A10) 

 
Recognizing that D mapping may have a different definition in each of the subsets the 
overall probability of 𝐸𝐸𝑖𝑖  which could occur in any of the four subsets will be the 
conditional probability: 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝐸𝐸) = �
𝑀𝑀𝑛𝑛
𝑁𝑁 � �

𝜌𝜌𝑖𝑖𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖

� + �
𝐹𝐹𝑛𝑛
𝑁𝑁� �

𝜌𝜌𝑖𝑖𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖

�

+ �
𝐸𝐸𝑛𝑛
𝑁𝑁 � �

𝜌𝜌𝑖𝑖𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖

� + �
𝑉𝑉𝑛𝑛
𝑁𝑁 � �

𝜌𝜌𝑖𝑖𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝐸𝐸𝑙𝑙𝑖𝑖

� 
(A11) 

 
A pictorial representation of the set is shown as: 

  

 

 

 

 

 

 

 

 

Examples 
 

This set and it's definitions of probability may seem a bit contrived, however, there are a 
number of examples where it provides a useful description. 
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Example 1: Colored and numbered beads 
In this initial example we may notice that the probabilities are described in two levels.  
If we were to have N colored beads, representing four groups, (S, F, B, O) placed into a 
jar, the probability of randomly drawing one from color group S would be 𝑀𝑀𝑒𝑒 = 𝑀𝑀𝑛𝑛 𝑁𝑁⁄ .  
If, in addition, we were to number each of the beads 1 though N and define 𝐷𝐷(𝐸𝐸𝑖𝑖) =
1 for all the subsets, the probability of a randomly selected bead being “n” will depend 
on the conditional probability of first being in a particular subset and then depending on 
the density distribution within that subset.   

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝐸𝐸) = �
𝑀𝑀𝑛𝑛
𝑁𝑁 � �

1
∑ 1𝑠𝑠

� + �
𝐹𝐹𝑛𝑛
𝑁𝑁� �

1
∑ 1𝑓𝑓

� + �
𝐸𝐸𝑛𝑛
𝑁𝑁 � �

1
∑ 1𝑏𝑏

� + �
𝑉𝑉𝑛𝑛
𝑁𝑁 � �

1
∑ 1𝑜𝑜

� (A12) 

 
From equation A7 we see that three of the four terms in the left hand side of equation 
A12 will be zero and the remaining term reduces to: 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝐸𝐸) =
1
𝑁𝑁 (A13) 

Which is just what we would expect given that the numbering system gave each element 
an equal D value and was independent of the subset. 

 

Example 2:  Multiple alphabet cryptogram  
A slightly more complex example of this set is its representation of a cryptogram that 
uses four different alphabets (say Greek, Latin, Hebrew and Cyrillic). Their relative 
frequency within the cryptogram is represented by the subsets.  Within each of the 
alphabets, the frequency of letters appear in a known ratio. For example, in English there 
are many more e's and t's than w's and q's.  These ratios form the basis for defining the D 
mappings. With this set up, a cryptanalysis of the expected probability distribution of 
letters could be checked against observation and a Bayesian attack used as the basis for 
solving the cryptogram.  In this case the individual letter probabilities will be: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝐸𝐸) = �
𝑀𝑀𝑛𝑛
𝑁𝑁 � �

𝜌𝜌𝑖𝑖𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝑀𝑀𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝑀𝑀𝑖𝑖

� + �
𝐹𝐹𝑛𝑛
𝑁𝑁� �

𝜌𝜌𝑖𝑖𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝐹𝐹𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝐹𝐹𝑖𝑖

� + �
𝐸𝐸𝑛𝑛
𝑁𝑁 � �

𝜌𝜌𝑖𝑖𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝐸𝐸𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝐸𝐸𝑖𝑖

�

+ �
𝑉𝑉𝑛𝑛
𝑁𝑁 � �

𝜌𝜌𝑖𝑖𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝑉𝑉𝑖𝑖
∑ 𝜌𝜌𝑖𝑖𝑖𝑖 𝑜𝑜𝐸𝐸𝑝𝑝𝑒𝑒𝑉𝑉𝑖𝑖

� 
(A14) 

 
Any single letter probability results in a value that depends on the fraction of times a 
particular alphabet is used and the probable occurrence of letters within the alphabet.  It 
should also be clear that: 

 

�𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛
𝑖𝑖

(𝐸𝐸𝑖𝑖) = 1 (A15) 

 
 

Lagrangian Trajectory Model 
We now shift our focus to a Lagrangian trajectory model and, to be specific, we consider 
a particle tracking formulation of some segment of a realistic geophysical marine 
environment.  As a particular model we specify GNOME (General NOAA Operational 
Modeling Environment) which is used to track oil spills and is in the public domain. 
Any number of common particle tracking models could be represented by this set model. 

The GNOME model allows the user to specify the pollutant as a number (N) of 
individual particles referred to as LEs (Lagrangian Elements).  These particles are 
assumed to represent an unspecified, but particular mass of pollutant.  Initially all of the 
LEs are contained (in a ship – set S) and may be moving through the domain. A spill 
scenario is developed where some fraction of the LEs are released from the ship 
(become floating – set F) into the marine environment.  The release may be 
instantaneous or variable over time and space within the domain.  Various transport 
processes, such as winds and currents will move the floating LEs and at some point they 
may become stranded along one of the shorelines specified in the model domain (on a 
beach - set B).  Stranding can be reversed in the sense that LEs may rewash from a 
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beach and rejoin the floating population of LEs (back into set F from set B). It is also 
possible that environmental transport processes carry LEs to an open boundary of the 
model domain and they then are and no longer part of the scenario under study (off the 
map - set O).  As the GNOME spill model runs, it provides a time stepping record of: 1) 
LEs not released (S), 2) LEs floating (F), 3) LEs beached (B), and 4) LEs that are off the 
map (O).  Thus, as the model runs through its scenario it provides time dependent data 
populating the LE sets defined above.  Each of the subsets is well defined and although 
set members can transition from one subset to another the overall constraints of the LE 
set and its contained subsets are enforced by the basic continuity requirements of 
GNOME (or any proper surface transport model).  

To complete the formulation of the LE set, the mapping (D) shown in equation A6 and 
A7 must be defined for each of the S, F, B, and O subsets. From the probability function 
(equation A9) it is also evident there is a link between the individual definition of D and 
the sum of the values over all of the 𝐷𝐷𝑛𝑛 subsets.  This means that the generalized density 
value is actually normalized for each of the subsets, and there is really only one degree 
of freedom left, and it is associated with “effective volume” specificity within that set. 
The obvious meaningful choices for volume specificity are: one (All of the LE's in the 
subset are thought of as resident in a single container.); and, 𝐸𝐸 ∈ 𝑠𝑠𝑝𝑝𝐸𝐸. (Each of the LEs 
in the subset are thought of as resident in their own partition of the subset.)  Using these 
two possibilities the D functions can be defined. 

Subset S – ship 
 

𝐷𝐷𝑠𝑠(𝐸𝐸𝑖𝑖) = 𝜌𝜌𝑠𝑠𝑛𝑛 = 𝑀𝑀𝑖𝑖 𝐸𝐸𝑖𝑖⁄  (A16) 

 
The 𝑀𝑀𝑛𝑛 LEs that are in the ship each make up a fraction of the “volume”, the total of 
which adds to a single volume. From a locational point of view the S (ship) subset is 
thought of as a single undifferentiated location.  We might notice that most tank ships 
are divided into a number of separate tanks, but oil spill trajectory models like GNOME 
do no distinguish the individual tanks.   
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Subset F – floating 

The target space for the floating LEs is the entire water region represented by the 
scenario under study.  The water surface area of the model is partitioned into individual 
sub areas (𝐸𝐸𝐸𝐸𝑙𝑙𝐸𝐸𝑖𝑖) associated with one of the LEs in the F subset.  The ratio of these sub 
area (sq. km.) segments will, in some sense, be related to the Eulerian neighborhood of 
the LE it is associated with.  

 
𝐷𝐷𝑓𝑓(𝐸𝐸𝑖𝑖) = 𝜌𝜌𝑓𝑓𝑖𝑖 = 𝑀𝑀𝑖𝑖 𝐸𝐸𝐸𝐸𝑙𝑙𝐸𝐸𝑖𝑖⁄  (A17) 

 
The F LEs may be scattered in any fashion whatsoever over the water surface of the 
model domain, and surrounding it is an associated area that represents its neighborhood. 
The density function (A17) then represents a normalized local Eulerian density.  From a 
dimensional point of view 𝐷𝐷𝑓𝑓is mass/area. This is appropriate since the floating surface 
on which LEs move is 2-dimensional. 

Subset B – beached 
The target space for the beached LEs is the entire shoreline, or all the non-open 
boundaries represented by the scenario under study. For the B subset, the shoreline will 
be partitioned into individual length segments (𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖) each of which incorporates one of 
the B LEs. The collection of each of these segments will make up the specificity 
associated with the subset B.  That is, there will be exactly 𝐸𝐸𝑛𝑛 segment 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖 lengths 
defined on B. 

 
𝐷𝐷𝑏𝑏(𝐸𝐸𝑖𝑖) = 𝜌𝜌𝑏𝑏𝑖𝑖 = 𝑀𝑀𝑖𝑖 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖⁄  (A18) 

 

From a dimensional point of view, 𝐷𝐷𝑏𝑏 is mass/length. This then explains what was 
meant by the term “generalized area” mentioned above.  The appropriate metric for 
shoreline is length, not area, so that is what is seen in equation A18.  Although this may 
seem a bit strange there is nothing in the definition of the LE set that requires that the D 
mappings be the same for each subset and, as can be seen the different subsets, may be 
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over dimensionally unrelated domains. 

Subset O – off map 
The final subset O is simple.  It represents a repository for all of the LEs that are 
transported outside of the region represented for the scenario under study.  This will be 
pollutant mass that we no longer have any information on.  We know the mass of the 
material we are no longer tracking, but it only has a single regional attribute “gone”.  In 
this sense, the O subset is somewhat like the S subset, and has a single undifferentiated 
location.  This leads to the following: 

 
𝐷𝐷𝑜𝑜(𝐸𝐸𝑖𝑖) = 𝜌𝜌𝑜𝑜𝑛𝑛 = 𝑀𝑀𝑖𝑖 𝐸𝐸𝑖𝑖⁄  (A19) 

 
Once LEs are off of the map their location is not specified, other than gone. 
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