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ABSTRACT

Many trajectory models used to study environmental distributions are
formulated to track Lagrangian particles embedded in Eulerian fields.
Where the Eulerian fields are used to represent advective and
diffusive processes. A particular modeling frame-work of this type is
GNOME (General NOAA Operational Modeling Environment) which is used
by NOAA's Office of Response and Restoration Emergency Response
Division for scientific support during spill events. This note is a
follow on to the analysis of GNOME output described in Galt, 2011,
which dealt primarily with the Lagrangian-to-Eulerian transformation
and presentation of model output representing floating pollutants in
non-convex, multiply connected domains. This work will focus on the
Lagrangian-to-Eulerian transformation and presentation of model
output representing the beached or stranded pollutants. The final
section then considers the use of Eulerian probability density fields
to define the information “entropy” of a trajectory model and
provides a brief discussion on how this approach characterizes

physical processes represented in the model.

The transformation presented here provides a robust method to
represent quantity of pollutant to impact a shoreline without the
limitations of grid-size or map-base dependencies typical of more

common interpretations of Lagrangian data.



ACKNOWLEDGEMENTS

The author would like to acknowledge many helpful discussions and
editorial suggestions by Renn Hanson and D. L Payton that have

contributed to this work



Table of Contents

AB ST RAC T e ¢ ¢ o et oo esesesesesoesocsesesesesesoesesesoesesoesscsscssssscscesascse 2
ACKNOWLEDGEMENT St e e e e e e ceeeeccccccccosccsosccsosccscccscccscscccccssscscccsscses 3
BACKGROUND . 4 ettt teeececececscsscscecscscscsscscsscsscsscsscsscsssscsossocsscs 5
ANALYSTS EXAMPLE. ¢ttt et et eeeecscscscsoscscscscsscscsscscsscsscsoscscsscs 10
CLUSTERING AS INFORMATION. « ¢ e eeeeeoeeocccsccccccscscccscccsccccscacccscscss 16
TRAJECTORY MODEL EVOLUTION, CLUSTERING AND ENTROPY....¢ceceeeececses 21
REFERENCE S . ¢ ettt eeeeecececsecsecsecsecsesesesescsssesesssososssssssscscsess 24



BACKGROUND

Lagrangian trajectory models provide a flexible framework for
studying a wide variety of pollutant distribution problems. They
typically model the pollutant as an ensemble of LE's (Lagrangian
elements or particles) and handle the mixed scale problem (releases
are initially very localized, yet eventually become widely
dispersed) without significant numerical dispersion. A limitation of
this approach is that the model output is a set of LE locations,
which when viewed graphically appears like a swarm of bees. This
gives a qualitative indication of the forecast location of the
pollutant, but what is usually desired is a quantitative Eulerian
density field. The Lagrangian-to-Eulerian transformation is not
straightforward in realistic geophysical domains, but satisfactory
results can be be obtained for floating distributions using
tessellation methods based on Thiessen polygons (Galt,2011). For
floating distributions of LE's the Eulerian densities are
dimensionally given as mass/km®> , but this approach breaks down when
applied to stranded or beached pollutants distributed along a
shoreline where the Eulerian density will be dimensionally
represented as mass/lkm . It is obvious that a different sort of
analysis is required for the “floating” vs. “beached” ensembles of
LE's. The remainder of this note addresses the Eulerian derivation

for the “beached” ensemble of LE's.

Assume that we are given a collection of particles that are randomly
distributed along a linear feature (a shoreline) as a Lagrangian data

set which have associated position information r(x;,y;) indexed over
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i=1,2,3... . It is often useful to consider the equivalent Eulerian
density of this distribution which will be dimensionally given as
mass/length. The algorithmic transformation that this requires can
become quite complicated when dealing with complex and possibly
fractal shorelines. It is therefore desirable to investigate the
possibility of robust alternate analysis methods that will not depend
on assumptions about an underlying map base. One such option would
be to consider cluster analysis, such as is commonly used in neural

network and AI applications (Xu and Wunch II,2009).

We will start by considering a uniform but random collection of point
masses. We then seek a linear metric that represents the neighboring
mass in proximity to any individual point mass. In some sense a
measure of the “clustering” of mass around that point. One such
trial function is the Gaussian kernel where the local length-metric

(dist[i]) is given by:
dmtﬁ]:J‘e%mpﬂwdr:h (1)
0

And with the (x,y) coordinates of mass points used to represent the

norms:

||r_ri||2:z((X_Xi)2+(y_)’i>2) (2)

i

As r » o in the definite integral seen in equation(l) approaches a
limit. We can represent the integral numerically using a point

collocation technique so that equation(l) can be written:
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This is a linear measure that selectively weights nearby point mass
objects. The value k is seen to scale the assumed uniform density of
mass in the vicinity of the point mass. As an example, if the
position data is given in kilometers with k=1 the “nearness kernel”
would imply a “standard uniform distribution” of (unity/per

kilometer). We can define that as our reference field I,

[)=%
2 (4)

Now consider what would happen if we were to numerically evaluate the

dist[i] value for each mass point using equation(3).

. S VIU
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This would provide a value of k; which is inversely proportional to

dist[i] and normalizing with equation(4) we will have:

[
dwﬂﬂ:thAMmewm) (6)
0

From this we see that applying equation(3) to each point mass in the

Lagrangian set provides a length-metric (in terms of the value k)



that scales the “nearness” of neighboring masses by scaling the
Gaussian kernel. As k increases the length-metric decreases like the
reciprocal of the local assumed uniform mass distribution. This then
is the cluster length scale we were seeking and a proper
representation of the Eulerian density field at the location of any
Lagrangian point will be the particle mass divided by the scale

distance

m.l,

1

0,=density,=— H:miki(mass/km) (7)

dist |i
From continuity considerations, we require that the integral of

density over the domain must add up to the total mass:

f 0'i6 (mi):Mbeached ( 8 )

The will not be a normal Riemann integral, but the measure can be
represented as a type of Stieltjes integral (Niamark,1968) where the
differential length associated with each mass particle will be:

d (m;)=I,(locallength unit)/1,(scaling factor for length) Using this and equation(6)

gives:

l. L
f0i6(mi)zzOil_l:Zmikil_I:Zmi:Mbeached (9)
0 0

Which confirms the result that the sums of the particle masses
conserves total mass. In addition, the sums of the product of local
densities times the linear-metric normalized by total mass is less

then or equal to unity. This means [,0,/[;M could serve as a



surrogate for probability density when considering the position data
of each particle as an independent event. In particular the

probability density of the state represented by particle i will be:

Lo,
probability density=p,= — (10)
( Z lO) (Mﬂoating +M beached)
And we note:
0<p, For each i
and (11)

2. p=1

Where the < condition in the second line of equation(ll) is due to
the fact that analyzing the beached particles generally does not
include the full potential of beaching. Some of the particles may
still be floating and could eventually strand on new (or previously
oiled) segments of the beach. As time goes on the beached fraction of
the potential masses used in equation(9) will become a larger
fraction of the total particle masses used in equation(10) and
eventually, if all the particles are located on the boundary, the sum

of the probabilities will be unity.

If the Lagrangian fields represented probabilities rather than mass
particles then the resulting Eulerian calculations would still
represent probability densities where total mass would be replaced by
unity (certainty) in equation(10). Section three of this note will

explore the probability implication of equation(10) in more detail.



ANALYSIS EXAMPLE

As an example of this approach I will demonstrate using the output
from a 24 hour GNOME trajectory run in Burrard Inlet (Tsleil-Waututh
Nation,2015 appendix 2) with a hypothetical release of 8000 particles
on a flood tide in the inner harbor between the 2™ Narrows and
Burnaby Narrows. The initial movement is due to a flood tide into
Burnaby Narrows, but after two tidal cycles the LE's are distributed
pretty much along the length of Burrard Inlet. Ebb and flood tides,
variable winds and a 18 hour re-float half life all contribute to the
distribution and, of the original 8000 particles over 7000 are
beached. A plot just showing the distribution of beached particles

is as follows:

Figure 1 — Plot of all beached particles

The detailed analysis goes through the following steps:
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1) for each LE the cluster distance eq(5) is calculated =k

1 1

2) the mass density is scaled giving o,
The beached particles are replotted with the radius of the LE's
proportional to the square root of the density subject to a minimum
of 1 pixel to ensure the full distribution is included. The plotted
size of the splots is held constant during a zoom of the figure so
that a detailed view of the Burnaby Narrows still presents the
heavily oiled segments, but does not obscure the details of the

underlying map.

Figure 2 — Plot of all beached particles scaled to Eulerian density

This gives a very different visual representation of the distribution
of beached particles. The clustering of particles near the initial
release sites is clearly seen whereas in the standard plot (showing
all of the LEs plotted independent of clustering) this facet of the
distribution is easily missed. 1In addition, a quantitative measure

of the local o0il density is available for each hit location.
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It should also be noted that the beached-o0il distribution can not be
inferred from floating-o0il distribution and the relationship between
these two distributions is complex depending on the wind history and
0il retention characteristics of the shoreline. For comparison the

distribution of the approximately 1000 remaining floating particles

is shown below:
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Figure 3 — Distribution of floating particle density ( mass/km®> )

An even better understanding of the beached particle distribution can
be obtained by looking at a length-metric analysis graph of the
particles. This graph is constructed by calculating the length scale
for each particle and then sorting them in descending order. Plotting
these values with particles along the horizontal axis and scale
distance up the vertical axis results in the following plot with the

blue region representing the sorted scale metrics:
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Cluster analysis
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density
scaled er/km
length-metric P
4

Particle count sorted by length-metric

Figure 4 — Plot of the sorted length-metric where the vertical axis

represents 1/In,(l.) and the horizontal axis is particle index.

Also drawn on this figure are horizontal lines that indicate the
absolute scale values of linear density where the upper line gives
the standard unit/km that is below the minimum value of the data set
and each subsequent lower line represents an increase of a factor of

2 in the density. This shows that three quarters of the particles
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(the left hand side of the plot) are generally scattered in a slowly

increasing density between 4 and 8 particles/km with no particular

evidence of clustering. At that point a sharp break in the curve

shows clustering taking place with approximately a quarter of the
particles in clusters where densities are on the order of > 32

particles/km. Cluster densities then rise steadily to values

exceeding 200 particles/km.
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CLUSTERING AS INFORMATION

When considering that each particle is associated with it a length-
metric it is possible to consider the “information content” of the
trajectory model that provided the output. This approach is well
known in communication studies and was initially developed by
Shannon's information theory work at the Bell Labs (Shannon and
Weaver,1963). The basic ideas center around signal “uncertainty” and
“entropy” and, since its introduction, has seen applications in many
fields such as Artificial Intelligence, data compression and

cryptanalysis.

To introduce these ideas, consider a diffusive model process that
completely spreads out a cluster of particles so that associated with
each element is a constant length-metric [, so that the entire group
of particles covers a distance of NI, . In this case, the
uncertainty in location of any individual particle will be (at least
statistically) represented by [, In some way [, is related to the

entropy of the particle.

As an alternative, consider a case with the same diffusive process
but restricted in time or by physical processes (kinematic — like
shorelines, or dynamic — like currents and winds) so that clustering
remains present and particles don't spread to a uniform final state.
In this case the length-metric associated with the clustered
particles will be [, which will on the average be smaller then [, .

This means that the particle in question is more closely confined.
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From a communication of information point of view the statistical
difference in bits required to represent [, vs. [, provides a data
compression and can be thought of as information supplied by the
model. For a collection of particles the sum of the bits (and
fractions of bits) gained by all of the clustering information is the
model's intelligence. As particles spread out and their positions
become less certain the “entropy” of the solution increases.
Information entropy like chemical entropy is always referenced to
some base state (0 degrees Kelvin — for chemistry) and uniformly
random distributions for information. To summarize: If we had no
information, particles could be anywhere with a uniform probability
implying a base state entropy. A model provides clustering
information and implies a lower state entropy. The difference
between these two is a quantitative measure of information provided
by the model. The major contribution provided by Shannon's
pioneering work was his quantifying the form that information entropy

functions must take.

In a message made up of digital signals for which each signal has a
known probability p; , Shannon defined the total “entropy” of the

message as:
H:_Z p;In, p, (12)

As in the case of thermodynamics the entropy is always referenced to
some base factor (such as absolute zero in chemical studies) and the
interest is always focused on changes in the value of H rather then
its absolute value. The changes in the value of H determine how a

process is progressing toward uncertainty. From a qualitative point
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of view this is easy to understand in dispersive models. A tight
grouping of particles (low entropy) spreads out leading to a weaker
understanding of where individual particles are (higher entropy). If
the domain is bounded the maximum entropy will be a state where all
the particles are at a uniform density filling the domain. Shannon
proved as a formal requirement of equation(1l2) that this would be the
final (equivalent to absolute zero) maximum entropy state. With this
much as background we may consider applying equation(1l2) to what we

discovered from equation(10) of this note.

Representing the sum of all the probability densities as represented

by equation(10) we get:

Zp Zlioi

= (13)
(Z IO) (Mﬂoating+Mbeached)

This clearly shows that the individual particle probabilities in the
numerator are normalized by a cumulative span in the denominator. It
is a simple function of the assumed length scale used for the
reference. If we were in a bounded domain it would be the domain

dimensions divided by the number of particles.

In our study case we used [, = 1 km as a reference scale. As a
measure of our final uncertainty this would probably be an under
estimate if we were modeling the North Pacific an over estimate if we

were modeling a small lake.

As an alternative to an arbitrarily chosen length reference we could
let the model domain determine a self describing length scale defined

as the mean of all the I.'s :

1
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zm:% (14)

This value would be self scaling in some respect, but implies that
the final ground entropy state was nothing but a redistribution of
the particles over the sections of the shoreline where it happened to
be at the time of analysis. The probabilities would sum to unity and

the “hit space” would be assumed fixed.

A better approach might be developed by going back to the trajectory
model and determining how much actual shoreline is available as a
target space for the stranding of particles. This would set the

scaling length to:

B Z ModelShorelineSegments

l (15)
d
" N floating +N beached
The final base entropy would then be defined as one particle per
l... length of shoreline (assuming all the particles beached). This

may seem like we are going back to an underlying map (potentially
fractal) problem, but this is not really the case. The model has a
unique shoreline (defined by the map.bna file in the case of GNOME)
and its segments can be determined with a simple algorithm. The
number of available particles is also available from the model
output, so the functional length scale defined by equation(15) is

available at the time of analysis.

Using [, or I, ., in place of [, in equation(13) would give a
different value for relative entropy, but once again the real issue
is the observed changes in entropy not the absolute value relative to
some base. These are alternate ways of looking at the same problem.

It is certainly likely that the sum of p, values associated with the
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mass points well be less then unity (some of the LE's are still
floating) and there are assumed to be available states which are
presently empty (segments of the shoreline that have not been oiled).
This is equivalent to the statement that the particles are not
uniformly distributed yet. Applying these equations to our example

case results in the data shown in the following table:

min nearest neighbor 1.26E-4 max nearest neighbor 0.183
maximum length-metric in analysis 0.2215 maximum line value 4
total number of beached particles 7404

total hit space 332.71 km (from model bna map)

lmod (unit hit space) 0.0415

unit Base Entropy 0.001619 Total Base state entropy 12.95
total hit probability 0.1152

present entropy is 1.805

entropy ratio 0.1393

Table 1 — Quantitative Analysis of Clustering Data, Probability Density, and Model
Entropy for test case.

Before leaving the discussion of information content associated with
probability densities and entropy we should note that in the
previously mentioned reference (Xu and Wunch II,2009) a nonlinear
Principle Component Analysis is described. This procedure allows the
kernel results in dist[i] to be transformed as a non-linear mapping
into a covariance matrix which then makes it possible to obtain EOF
eigenvalues and eigenvectors using standard EOF methods. The
eigenvectors provide a graphic representation of dominant clusters

and the eigenvalues quantify how much model variance they contain.
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TRAJECTORY MODEL EVOLUTION, CLUSTERING AND
ENTROPY

The initial aim of this note was to consider a linear metric to
represent the Eulerian density of a Lagrangian distribution known to
be confined to a general curvilinear domain. Introduction of a
Gaussian kernel approach for clustering led to the ability of
deriving a shoreline density (mass/length) which did not include
considerations of a background map or introduction of a raster grid.
Several graphical examples demonstrated that these computational
methods applied to the output of a Lagrangian-oil-trajectory model's
beached (or stranded) data provides useful presentations in an
Eulerian form. Lagrangian to Eulerian analysis of model output
representing floating oil using tessellation with Thiessen polygons
provides mass/length-squared representation (Galt and Hanson,2015).
Although the computational methods are quite different, this pair of
analysis techniques provide a powerful methodology to process and

present Lagrangian oil trajectory model output.

The availability of Eulerian density data: ( mass/km forstranded ) and

( mass/km®for floating ) pollutants enables us to define probability
density functions for the distributions predicted by the oil
trajectory model. From these it is possible to consider the model
output as a data channel or stream of information with a well defined
“entropy”. The time development of the model entropy is an integral
measure of what is going on with the overall model dynamics. It is a

characterization of the regional dynamics. It describes how much the
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model can tell us and how rapidly it's predictive power fades.

Consider the following:

The ocean surface is a turbulent and chaotic environment. Particles
floating on it disperse. This can be thought of as a destruction of
clustering. Initial clusters spread. The entropy representing the
probability densities of particle locations will increase
monotonically. If no other physical process were active this
increase in entropy would continue to rise and eventually asymptote
when the particles are uniformly distributed over the domain. This

is not a particularly interesting, but well defined entropy curve.

Now we can reconsider the problem and introduce physical processes.
These will be in the form of winds and currents (“movers”) and
shorelines intercepting the resulting “moving particles”. These
processes can represent anything. Those that are simple translations
won't change the time dependence of the entropy curve, but virtually
any other behavior will. Shears and divergences will enhance
dispersion (lessen clustering) while convergences and stranding on
shorelines will represent anti-dispersion (clustering). All the
effects of these processes will be reflected in the time dependent
curve of the model entropy. Regions where shear and divergences
dominate will show a relatively steeper rise in entropy which will
indicate pollutants will be more difficult to locate and encounter.
On the other hand convergence and beaching, leading to clustering,
will cause a decrease in the rise of entropy which may even plateau
or decrease. This will indicate trapping of pollutants and time

horizons when higher concentrations will present themselves.

We can expect that the general time dependent shape of entropy curves
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will characterize the fundamental dynamics of the region. The strong
“convergences” in Cook Inlet and at the fresh-water interface along
coastal Gulf of Mexico should lead to clustering behavior. Sea
breeze regions may also show periodic clustering enhancements due to
beaching. Divergent flows over shoals should show divergent behavior
and destroy clustering. Time dependent entropy analysis of regional
trajectories should provide additional understanding about how much
information we might expect from model studies, how long they are
likely to provide useful information without requiring new data
assimilation, and particular time windows when trapping or cluster

formation might occur.
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